Engineered nanomaterials in plant protection: their controlled, site-directed delivery and phytotoxicity

Authors

  • Vinod W. Patil Department of Botany, Institute of Science, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, Maharashtra, India
  • Nilkanth S. Suryawanshi Department of Botany, K.V. Pendharkar College of Arts, Science & Commerce, Dombivli (East), University of Mumbai, Mumbai-421203, Maharashtra, India
  • Mohanish N. Bokhad Department of Botany, Government Vidarbha Institute of Science and Humanities, Sant Gadge Baba Amravati University, Amravati-444604, Maharashtra, India
  • Vanashree J. Parsodkar Department of Botany, Institute of Science, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, Maharashtra, India
  • Asha S. Narhe Department of Botany, K.V. Pendharkar College of Arts, Science & Commerce, Dombivli (East), University of Mumbai, Mumbai-421203, Maharashtra, India

DOI:

https://doi.org/10.25081/cb.2024.v15.7906

Keywords:

Nanoformulations, Controlled delivery, Crop protection, Crop improvement, Nanotoxicity

Abstract

Engineered nanomaterials (ENMs) are being produced and utilized in certain nanoformulations almost in every sector of development including agriculture. The diverse groups of engineered nanoparticles (ENPs) provide numerous benefits in agriculture, but their bulk and direct delivery pose a serious risk to the plants and ecosystem for a long time. The harmful effects on all the exposed living systems are owing to the variable shape, size, behaviour and toxic properties of ENPs. The accumulated ENMs in plant tissue may lead to biomagnification at a higher trophic level causing severe toxicity. The hazardous effects of these entities can be minimized with their controlled, specified and targeted delivery to the crop plants. Such smart-delivery systems as Ehrlich’s ‘magic bullets’ are being demonstrated for nutrients and growth enhancers, fertilizers, pesticides and weedicides; as well as biomolecules in plant genetic engineering. This review summarizes the benefits of ENMs and ENPs in plant protection to increase crop productivity, their targeted delivery suggesting sustainable utilization, and the available information on phytotoxicity.

Downloads

Download data is not yet available.

References

Abdel-aziz, H. M. M., Hasaneen, M. N. A., & Omer, A. M. (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14(1), 1-9. https://doi.org/10.5424/sjar/2016141-8205

Abdel-Raouf, N., Al-Enazi, N. M., & Ibraheem, I. B. M. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry, 10(S2), S3029-S3039. https://doi.org/10.1016/j.arabjc.2013.11.044

Abd-Elsalam, K. A. (2012). Nanoplatforms for Plant Pathogenic Fungi Management. Fungal Genomics & Biology, 2(2), 1-2.

Achari, G. A., & Kowshik, M. (2018). Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora. Journal of Agricultural and Food Chemistry, 66(33), 8647-8661. https://doi.org/10.1021/acs.jafc.8b00691

Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2019). Recent advances in nanoenabled fertilizers and pesticides: a critical review of mechanisms of action. Environmental Science: Nano, 6, 2002-2030. https://doi.org/10.1039/c9en00265k

Ahmad, J., Khatoon, F., Amna, Nida, & Qureshi, M. I. (2023). Engineered nanomaterials in crop plants salt stress management. In A. Husen (

Eds.), Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management (pp. 205-226) Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-323-91933-3.00019-2

Ahmed, F., Arshi, N., Kumar, S., Gill, S. S., Gill, R., Tuteja, N., & Koo, B. H. (2013). Nanobiotechnology: Scope and Potential for Crop Improvement. In N. Tuteja & S. S. Gill (Eds.), Crop Improvement Under Adverse Conditions (pp. 245-269). New York, US: Springer. https://doi.org/10.1007/978-1-4614-4633-0_11

Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49-67. https://doi.org/10.2147/NSA.S99986

Amist, N., Singh, N. B., Yadav, K., Singh, S. C., & Pandey, J. K. (2017). Comparative studies of Al3+ ions and Al2O3 nanoparticles on growth and metabolism of cabbage seedlings. Journal of Biotechnology, 254, 1-8. https://doi.org/10.1016/j.jbiotec.2017.06.002

Amna, Yasmine, R., Ahmad, J., Qamar, S., & Qureshi, M. I. (2023). Engineered nanomaterials for sustainable agricultural production, soil improvement, and stress management: an overview. In A. Husen (Eds.), Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management (pp. 1-23). Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-323-91933-3.00022-2

Anderson, A., McLean, J., McManus, P., & Britt, D. (2017). Soil chemistry influences the phytotoxicity of metal oxide nanoparticles. International Journal of Nanotechnology, 14(1-6), 15-21. https://doi.org/10.1504/IJNT.2017.082438

Anjum, N. A., Singh, N., Singh, M. K., Sayeed, I., Duarte, A. C., Pereira, E., & Ahmad, I. (2014). Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Science of the Total Environment, 472, 834-841. https://doi.org/10.1016/j.scitotenv.2013.11.018

Anjum, N. A., Singh, N., Singh, M. K., Shah, Z. A., Duarte, A. C., Pereira, E., & Ahmad, I. (2013). Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). Journal of Nanoparticle Research, 15, 1770. https://doi.org/10.1007/s11051-013-1770-7

Antonacci, A., Arduini, F., Moscone, D., Palleschi, G., & Scognamiglio, V. (2018). Nanostructured (Bio)sensors for smart agriculture. TrAC Trends in Analytical Chemistry, 98, 95-103. https://doi.org/10.1016/j.trac.2017.10.022

Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., & Zaidi, M. G. H. (2012). Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation, 66, 303-310. https://doi.org/10.1007/s10725-011-9649-z

Arruda, S. C. C., Silva, A. L. D., Galazzi, R. M., Azevedo, R. A., & Arruda, M. A. Z. (2015). Nanoparticles applied to plant science: A review. Talanta, 131, 693-705. https://doi.org/10.1016/j.talanta.2014.08.050

Askary, M., Talebi, S. M., Amini, F., & Bangan, A. D. B. (2017). Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija, 63(1), 65-75. https://doi.org/10.6001/biologija.v63i1.3476

Atha, D. H., Wang, H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., Dizdaroglu, M., Xing, B., & Nelson, B. C. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science and Technology, 46(3), 1819-1827. https://doi.org/10.1021/es202660k

Azeem, B., Kushaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181, 11-21. https://doi.org/10.1016/j.jconrel.2014.02.020

Baek, Y. W., & An, Y. J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of The Total Environment, 409(8), 1603-1608. https://doi.org/10.1016/j.scitotenv.2011.01.014

Baker, S., Volova, T., Prudnikova, S. V., Satish, S., & Prasad, M. N. N. (2017). Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environmental Toxicology and Pharmacology, 53, 10-17. https://doi.org/10.1016/j.etap.2017.04.012

Balaure, P. C., Gudovan, D., & Gudovan, I. (2017). Nanopesticides: a new paradigm in crop protection. In A. M. Grumezescu (Eds.), New Pesticides and Soil Sensors (pp. 129-192) Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-12-804299-1/00005-9

Banik, S., & Sharma, P. (2011). Plant pathology in the era of nanotechnology. Indian Phytopathol, 64(2), 120-127.

Baskar, V., Safia, N., Preethy, K. S., Dhivya, S., Thiruvengadam, M., & Sathishkumar, R. (2020). A comparative study of phytotoxic effects of metal oxide (CuO, ZnO and NiO) nanoparticles on in-vitro grown Abelmoschus esculentus. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 155(2), 374-383. https://doi.org/10.1080/11263504.2020.1753843

Bhong, S. Y., More, N., Choppadandi, M., & Kapusetti, G. (2019). Review on carbon nanomaterials as typical candidates for orthopaedic coatings. SN Applied Sciences, 1, 76. https://doi.org/10.1007/s42452-018-0082-z

Boomi, P., Ganesan, R. M., Poorani, G., Prabu, H. G., Ravikumar, S., & Jeyakanthan, J. (2019). Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Materials Science and Engineering: C, 99, 202-210. https://doi.org/10.1016/j.msec.2019.01.105

Cañas, J. E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E. H., & Olszyk, D. (2008). Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27(9), 1922-1931. https://doi.org/10.1897/08-117.1

Cao, W., Gong, J., Zeng, G., Song, B., Zhang, P., Li, J., Fang, S., Tang, S., Ye, J., & Cai, Z. (2020). Potential Interactions between Three Common Metal Oxide Nanoparticles and Antimony (III/V) Involving Their Uptake, Distribution, and Phytotoxicity to Soybean. ACS Sustainable Chemistry & Engineering, 8(27), 10125-10141. https://doi.org/10.1021/acssuschemeng.0c02144

Chahardoli, A., Karimi, N., Ma, X., & Qalekhani, F. (2020). Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Scientific Reports, 10, 3847. https://doi.org/10.1038/s41598-020-60841-6

Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science & Technology, 22(11), 585-594. https://doi.org/10.1016/j.tifs.2011.09.004

Chichiriccò, G., & Poma, A. (2015). Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 5(2), 851-873. https://doi.org/10.3390/nano5020851

Chowdappa, P., & Gowda, S. (2013). Nanotechnology in crop protection: Status and scope. Pest Management in Horticultural Ecosystems, 19(2), 131-151.

Chu, H., Kim, H.-J., Kim, J. S., Kim, M.-S., Yoon, B.-D., Park, H., & Kim, C. Y. (2012). A nanosized Ag-silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis. Radiation Physics and Chemistry, 81(2), 180-184. https://doi.org/10.1016/j.radphyschem.2011.10.004

Chun, S., Muthu, M., & Gopal, J. (2020). Nanotoxic impacts on staple food crops: There’s plenty of room for the unpredictables. Critical Reviews in Food Science and Nutrition, 60(22), 3725-3736. https://doi.org/10.1080/10408398.2019.1707158

Chung, I.-M., Venkidasamy, B., & Thiruvengadam, M. (2019). Nickel oxide nanoparticles cause substantial physiological, phytochemical, and molecular-level changes in Chinese cabbage seedlings. Plant Physiology and Biochemistry, 139, 92-101. https://doi.org/10.1016/j.plaphy.2019.03.010

Cui, D., Zhang, P., Ma, Y.-H., He, X., Li, Y.-Y., Zhao, Y.-C., & Zhang, Z.-Y. (2014). Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). Journal of Zhejiang University: Science A, 15, 662-670. https://doi.org/10.1631/jzus.A1400114

Cui, J., & Hope, G. A. (2015). Raman and fluorescence spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7. Journal of Spectroscopy, 2015, 940172. https://doi.org/10.1155/2015/940172

Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., & Landry, M. P. (2018). Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends in Biotechnology, 36(9), 882-897. https://doi.org/10.1016/j.tibtech.2018.03.009

Cvjetko, P., Zovko, M., Štefanić, P. P., Biba, R., Tkalec, M., Domijan, A.-M., Vrček, I. V., Letofsky-Papst, I., Šikić, S., & Balen, B. (2018). Phytotoxic effects of silver nanoparticles in tobacco plants. Environmental Science and Pollution Research, 25, 5590-5602. https://doi.org/10.1007/s11356-017-0928-8

De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-540. https://doi.org/10.1126/science.1222453

Debnath, P., Mondal, A., Sen, K., Mishra, D., & Mondal, N. K. (2020). Genotoxicity study of nano Al2O3, TiO2 and ZnO along with UV-B exposure: An Allium cepa root tip assay. Science of The Total Environment, 713, 136592. https://doi.org/10.1016/j.scitotenv.2020.136592

Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., & Anderson, A. J. (2012). CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(1125), 1125. https://doi.org/10.1007/s11051-012-1125-9

Ding, Y., Bai, X., Ye, Z., Gong, D., Cao, J., & Hua, Z. (2019). Humic acid regulation of the environmental behavior and phytotoxicity of silver nanoparticles to Lemna minor. Environmental Science: Nano, 6(12), 3712-3722. https://doi.org/10.1039/c9en00980a

Dobrucka, R., Szymanski, M., & Przekop, R. (2020). Phytotoxic effects of biosynthesized ZnO nanoparticles using Betonica officinalis extract. Environmental Technology, 42(24), 3747-3755. https://doi.org/10.1080/09593330.2020.1740331

Domingo, G., Bracale, M., & Vannini, C. (2019). Phytotoxicity of Silver Nanoparticles to Aquatic Plants, Algae, and Microorganisms. In D. K. Tripathi, P. Ahmad, S. Sharma, D. K. Chauhan & N. K. Dubey (Eds.), Nanomaterials in Plants, Algae and Microorganisms (Vol. 2, pp. 143-168) Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-12-811488-9.00008-1

Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., & Guo, H. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13(4), 822-828. https://doi.org/10.1039/c0em00611d

Du, W., Tan, W., Peralta-videa, J. R., Gardea-torresdey, J. L., Ji, R., Yin, Y., & Guo, H. (2017). Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry, 110, 210-225. https://doi.org/10.1016/j.plaphy.2016.04.024

Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11-23. https://doi.org/10.1016/j.btre.2017.03.002

Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A. K., Taghizadeh, S., Ghasemi, Y., & Berenjian, A. (2018). Plant-Mediated Synthesis and Applications of Iron Nanoparticles. Molecular Biotechnology, 60, 154-168. https://doi.org/10.1007/s12033-017-0053-4

Elmer, W., & White, J. C. (2018). The Future of Nanotechnology in Plant Pathology. Annual Review of Phytopathology, 56, 111-133. https://doi.org/10.1146/annurev-phyto-080417-050108

Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Kennedy, L. J., Ramalingam, R. J., & Al-Lohedan, H. A. (2018). Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Journal of Photochemistry and Photobiology B: Biology, 180, 39-50. https://doi.org/10.1016/j.jphotobiol.2018.01.023

Falco, W. F., Scherer, M. D., Oliveira, S. L., Wender, H., Colbeck, I., Lawson, T., & Caires, A. R. L. (2019). Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Science of The Total Environment, 701, 134816. https://doi.org/10.1016/j.scitotenv.2019.134816

Feizi, H., Kamali, M., Jafari, L., & Rezvani Moghaddam, P. (2013). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 91(4), 506-511. https://doi.org/10.1016/j.chemosphere.2012.12.012

Feng, S., Ma, Y., Yang, F., Chu, J., & Zhang, Z. (2018). Phytotoxicity of rare earth nanomaterials. In M. Faisal, Q. Saquib, A. A. Alatar, A. A. Al-Khedhairy (Eds.), Phytotoxicity of Nanoparticles (pp. 119-132) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-76708-6_4

Gao, X., Avellan, A., Laughton, S., Vaidya, R., Rodrigues, S. M., Casman, E. A., & Lowry, G. V. (2018). CuO Nanoparticle Dissolution and Toxicity to Wheat (Triticum aestivum) in Rhizosphere Soil. Environmental Science and Technology, 52(5), 2888-2897. https://doi.org/10.1021/acs.est.7b05816

García-gómez, C., & Fernández, M. D. (2019). Impacts of metal oxide nanoparticles on seed germination, plant growth and development. In S. K. Verma & A. K. Das (Eds.), Comprehensive Analytical Chemistry (Vol. 84, pp. 75-124). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/bs.coac.2019.04.007

Ge, Y., Priester, J. H., Van De Werfhorst, L. C., Walker, S. L., Nisbet, R. M., An, Y.-J., Schimel, J. P., Gardea-Torresdey, J. L., & Holden, P. A. (2014). Soybean Plants Modify Metal Oxide Nanoparticle Effects on Soil Bacterial Communities. Environmental Science and Technology, 48(22), 13489-13496. https://doi.org/10.1021/es5031646

Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324(5934), 1530-1535. https://doi.org/10.1126/science.1158877

Ghosh, M., Bhadra, S., Adegoke, A., Bandyopadhyay, M., & Mukherjee, A. (2015). MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 774, 49-58. https://doi.org/10.1016/j.mrfmmm.2015.03.004

Ghosh, M., Jana, A., Sinha, S., Jothiramajayam, M., Nag, A., Chakraborty, A., Mukherjee, A., & Mukherjee, A. (2016). Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 807, 25-32. https://doi.org/10.1016/j.mrgentox.2016.07.006

Ghosh, P. S., Kim, C.-K., Han, G., Forbes, N. S., & Rotello, V. M. (2008). Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano, 2(11), 2213-2218. https://doi.org/10.1021/nn800507t

Ghosh, S., & Kikani, B. (2023). Role of engineered nanomaterials in sustainable agriculture and crop production. In S. Ghosh, S. Thongmee & A. Kumar (EDs.), Agricultural Nanobiotechnology (pp. 371-387) Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-323-91908-1.00015-8

Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., Reuel, N. F., Hilmer, A. J., Sen, F., Brew, J. A., & Strano, M. S. (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13, 400-408. https://doi.org/10.1038/nmat3890

Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60(39), 9781-9792. https://doi.org/10.1021/jf302154y

Gong, N., Shao, K., Che, C., & Sun, Y. (2019). Stability of nickel oxide nanoparticles and its influence on toxicity to marine algae Chlorella vulgaris. Marine Pollution Bulletin, 149, 110532. https://doi.org/10.1016/j.marpolbul.2019.110532

González-Melendi, P., Fernández-Pacheco, R., Coronado, M. J., Corredor, E., Testillano, P. S., Risueño, M. C., Marquina, C., Ibarra, M. R., Rubiales, D., & Pérez-de-Luque, A. (2008). Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Botany, 101(1), 187-195. https://doi.org/10.1093/aob/mcm283

Gopinath, K., Venkatesh, K. S., Ilangovan, R., Sankaranarayanan, K., & Arumugam, A. (2013). Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Industrial Crops and Products, 50, 737-742. https://doi.org/10.1016/j.indcrop.2013.08.060

Goswami, L., Kim, K.-H., Deep, A., Das, P., Bhattacharya, S. S., Kumar, S., & Adelodun, A. A. (2017). Engineered nano particles: Nature, behavior, and effect on the environment. Journal of Environmental Management, 196, 297-315. https://doi.org/10.1016/j.jenvman.2017.01.011

Haji-Hashemi, H., Habibi, M. M., Safarnejad, M. R., Norouzi, P., & Ganjali, M. R. (2018). Label-free electrochemical immunosensor based on electrodeposited Prussian blue and gold nanoparticles for sensitive detection of citrus bacterial canker disease. Sensors and Actuators B: Chemical, 275, 61-68. https://doi.org/10.1016/j.snb.2018.07.148

Hayes, K. L., Mui, J., Song, B., Sani, E. S., Eisenman, S. W., Sheffield, J. B., & Kim, B. (2020). Effects, uptake, and translocation of aluminum oxide nanoparticles in lettuce: A comparison study to phytotoxic aluminum ions. Science of The Total Environment, 719, 137393. https://doi.org/10.1016/j.scitotenv.2020.137393

Hayles, J., Johnson, L., Worthley, C., & Losic, D. (2017). Nanopesticides: a review of current research and perspectives. In A. M. Grumezescu (Eds.), New Pesticides and Soil Sensors (pp. 193-225) Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-12-804299-1.00006-0

Himmelweit, F. (1960). The Collected Papers of Paul Ehrlich: Chemotherapy. (1st ed.). London, UK: Pergamon Press Ltd.

Hong, J., Peralta-Videa, J. R., Rico, C., Sahi, S., Viveros, M. N., Bartonjo, J., Zhao, L., & Gardea-Torresdey, J. L. (2014). Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environmental Science and Technology, 48(8), 4376-4385. https://doi.org/10.1021/es404931g

Hong, J., Wang, L., Sun, Y., Zhao, L., Niu, G., Tan, W., Rico, C. M., Peralta-videa, J. R., & Gardea-torresdey, J. L. (2015). Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Science of the Total Environment, 563-564, 904-911. https://doi.org/10.1016/j.scitotenv.2015.08.029

Hossain, Z., Mustafa, G., Sakata, K., & Komatsu, S. (2016). Insights into the proteomic response of soybean towards Al₂O₃, ZnO, and Ag nanoparticles stress. Journal of Hazardous Materials, 304, 291-305. https://doi.org/10.1016/j.jhazmat.2015.10.071

Hussain, T. (2017). Nanotechnology: Diagnosis of Plant Diseases. Agricultural Research & Technology, 10(1), 555777. https://doi.org/10.19080/ARTOAJ.2017.10.555777

Iavicoli, I., Leso, V., Beezhold, D. H., & Shvedova, A. A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96-111. https://doi.org/10.1016/j.taap.2017.05.025

Islam, N. U., Jalil, K., Shahid, M., Rauf, A., Muhammad, N., Khan, A., Shah, M. R., & Khan, M. A. (2019). Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arabian Journal of Chemistry, 12(8), 2914-2925. https://doi.org/10.1016/j.arabjc.2015.06.025

Jalali, M., Ghanati, F., Modarres-Sanavi, A. M., & Khoshgoftarmanesh, A. H. (2017). Physiological effects of repeated foliar application of magnetite nanoparticles on maize plants. Journal of Agronomy and Crop Science, 203(6), 593-602. https://doi.org/10.1111/jac.12208

Jalil, S. U., & Ansari, M. I. (2020). Role of nanomaterials in weed control and plant diseases management. In A. Husen & M. Jawaid (Eds.), Nanomaterials for Agriculture and Forestry Applications (pp. 421-434) Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-817852-2.00017-2

Jamdagni, P., Khatri, P., & Rana, J. S. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University - Science, 30(2), 168-175. https://doi.org/10.1016/j.jksus.2016.10.002

Jampílek, J., & Kráľová, K. (2017). Nanopesticides: preparation, targeting, and controlled release. In A. M. Grumezescu (Eds.), New Pesticides and Soil Sensors (pp. 81-127) Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-12-804299-1.00004-7

Jayarambabu, N., & Rao, K. V. (2019). Bio-Engineered Nanomaterials for Plant Growth Promotion and Protection. In K. A. Abd-Elsalam & R. Prasad (Eds.), Nanobiotechnology Applications in Plant Protection (Vol. 2, pp. 35-48). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-13296-5_3

Jebril, S., Jenana, R. K. B., & Dridi, C. (2020). Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities : in vitro and in vivo. Materials Chemistry and Physics, 248, 122898. https://doi.org/10.1016/j.matchemphys.2020.122898

Jeyasubramanian, K., Thoppey, U. U. G., Hikku, G. S., Selvakumar, N., Subramania, A., & Krishnamoorthy, K. (2016). Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Advances, 6(19), 15451-15459. https://doi.org/10.1039/c5ra23425e

Joel, D. M. (2000). The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite. Crop Protection, 19(8-10), 753-758. https://doi.org/10.1016/S0261-2194(00)00100-9

Jurgons, R., Seliger, C., Hilpert, A., Trahms, L., Odenbach, S., & Alexiou, C. (2006). Drug Loaded Magnetic Nanoparticles for Cancer Therapy. Journal of Physics: Condensed Matter, 18, S2893-S2902. https://doi.org/10.1088/0953-8984/18/38/S24

Kalia, A., Luthra, K., Sharma, S. P., Dheri, G. S., Taggar, M. S., & Gomes, C. (2019). Chitosan-urea nano-formulation: Synthesis, characterization and impact on tuber yield of potato. Acta Horticulturae, 1255, 97-105. https://doi.org/10.17660/ActaHortic.2019.1255.16

Kamali, M., Aminabhavi, T. M., Abbassi, R., Dewil, R., & Appels, L. (2022). Engineered nanomaterials in microbial fuel cells – Recent developments, sustainability aspects, and future outlook. Fuel, 310, 122347. https://doi.org/10.1016/J.FUEL.2021.122347

Kamle, M., Mahato, D. K., Sheetal, D., Soni, R., Tripathi, V., Mishra, A. K., & Kumar, P. (2020). Nanotechnological interventions for plant health improvement and sustainable agriculture. 3 Biotech, 10, 168. https://doi.org/10.1007/s13205-020-2152-3

Kannan, K., Radhika, D., Nikolova, M. P., Sadasivuni, K. K., Mahdizadeh, H., & Verma, U. (2020). Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorganic Chemistry Communications, 113, 107755. https://doi.org/10.1016/j.inoche.2019.107755

Kansara, K., Bolan, S., Radhakrishnan, D., Palanisami, T., Al-Muhtaseb, A. H., Bolan, N., Vinu, A., Kumar, A., & Karakoti, A. (2022). A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environmental Pollution, 296, 118726. https://doi.org/10.1016/J.ENVPOL.2021.118726

Kaphle, A., Navya, P. N., Umapathi, A., & Daima, H. K. (2018). Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environmental Chemistry Letters, 16, 43-58. https://doi.org/10.1007/s10311-017-0662-y

Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J., & Schroeder, A. (2018). Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Scientific Reports, 8, 7589. https://doi.org/10.1038/s41598-018-25197-y

Karunakaran, G., Suriyaprabha, R., Rajendran, V., & Kannan, N. (2016). Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. IET Nanobiotechnology, 10(4), 171-177. https://doi.org/10.1049/iet-nbt.2015.0007

Keller, A. A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15, 1692. https://doi.org/10.1007/s11051-013-1692-4

Khalid, S., Parveen, S., Shah, M. R., Rahim, S., Ahmed, S., & Malik, M. I. (2020). Calixarene coated gold nanoparticles as a novel therapeutic agent. Arabian Journal of Chemistry, 13(2), 3988-3996. https://doi.org/10.1016/j.arabjc.2019.04.007

Khan, M. R., & Rizvi, T. F. (2014). Nanotechnology: Scope and Application in Plant Disease Management. Plant Pathology Journal, 13(3), 214-231. https://doi.org/10.3923/ppj.2014.214.231

Khan, M. R., & Rizvi, T. F. (2017). Application of Nanofertilizer and Nanopesticides for Improvements in Crop Production and Protection. In M. Ghorbanpour, K. Manika, & A. Varma (Eds.), Nanoscience and Plant–Soil Systems (pp. 405-427) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-46835-8_15

Khan, M. R., Ahamad, F., & Rizvi, T. F. (2019a). Effect of Nanoparticles on Plant Pathogens. In M. Ghorbanpour & S. H. Wani (Eds.), Advances in Phytonanotechnology (pp. 215-140) Massachusetts, US: Academic Press. https://doi.org/10.1016/b978-0-12-815322-2.00009-2

Khan, T., Ullah, N., Khan, M. A., Mashwani, Z., & Nadhman, A. (2019). Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Advances in Colloid and Interface Science, 272, 102017. https://doi.org/10.1016/j.cis.2019.102017

Khashan, K. S., Sulaiman, G. M., Hamad, A. H., Abdulameer, F. A., & Hadi, A. (2017). Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity. Applied Physics A, 123, 190. https://doi.org/10.1007/s00339-017-0826-4

Khatua, A., Priyadarshini, E., Rajamani, P., Patel, A., Kumar, J., Naik, A., Saravanan, M., Barabadi, H., Prasad, A., Ghosh, I., Bernard, P., & Meena, R. (2020). Phytosynthesis, Characterization and Fungicidal Potential of Emerging Gold Nanoparticles Using Pongamia pinnata Leave Extract: A Novel Approach in Nanoparticle Synthesis. Journal of Cluster Science, 31, 125-131. https://doi.org/10.1007/s10876-019-01624-6

Khiyami, M. A., Almoammar, H., Awad, Y. M., Alghuthaymi, M. A., & Abd-Elsalam, K. A. (2014). Plant pathogen nanodiagnostic techniques: Forthcoming changes? Biotechnology and Biotechnological Equipment, 28(5), 775-785. https://doi.org/10.1080/13102818.2014.960739

Khodakovskaya, M. V., & Lahiani, M. H. (2016). Plant nanotechnology: Principles and practices. In C. Kole (Ed.), Plant Nanotechnology: Principles and Practices (pp. 257-261) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-42154-4_10

Khodakovskaya, M. V., de Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6(3), 2128-2135. https://doi.org/10.1021/nn204643g

Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221-3227. https://doi.org/10.1021/nn900887m

Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection : A review. Crop Protection, 35, 64-70. https://doi.org/10.1016/j.cropro.2012.01.007

Konotop, Y., Stepanchenko, K., Karpets, L.-A., Zinchenko, A., Kovalenko, M., Smirnov, O., Batsmanova, L., & Taran, N. (2019). Phytotoxicity of colloidal solutions of stabilized and non-stabilized nanoparticles of essential metals and their oxides. Nova Biotechnologica et Chimica, 18(1), 1-9. https://doi.org/10.2478/nbec-2019-0001

Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U. A., Arachchige, D. M. B., Kumarasinghe, A. R., Dahanayake, D., Karunaratne, V., & Amaratunga, G. A. J. (2017). Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen. ACS Nano, 11(2), 1214-1221. https://doi.org/10.1021/acsnano.6b07781

Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 95-99. https://doi.org/10.1016/j.saa.2012.03.002

Kumar, C. M. V., Karthick, V., Kumar, V. G., Inbakandan, D., Rene, E. R., Suganya, K. S. U., Embrandiri, A., Dhas, T. S., Ravi, M., & Sowmiya, P. (2022). The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. Environmental Research, 212, 113202. https://doi.org/10.1016/J.ENVRES.2022.113202

Kumar, N., Balamurugan, A., Shafreen, M. M., Rahim, A., Vats, S., & Vishwakarma, K. (2020). Nanomaterials: Emerging Trends and Future Prospects for Economical Agricultural System. In M. Ghorbanpour, P. Bhargava, A. Varma, D. K. Choudhary (Eds.), Biogenic Nano-Particles and their Use in Agro-ecosystems (pp. 281-305) Cham, Switzerland: Springer. https://doi.org/10.1007/978-981-15-2985-6_5

Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., & Kim, K.-H. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 294, 131-153. https://doi.org/10.1016/j.jconrel.2018.12.012

Kumari, M., Khan, S. S., Pakrashi, S., Mukherjee, A., & Chandrasekaran, N. (2011). Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. Journal of Hazardous Materials, 190(1-3), 613-621. https://doi.org/10.1016/j.jhazmat.2011.03.095

Kusiak, M., Oleszczuk, P., & Jośko, I. (2022). Cross-examination of engineered nanomaterials in crop production: Application and related implications. Journal of Hazardous Materials, 424, 127374. https://doi.org/10.1016/j.jhazmat.2021.127374

Lade, B. D., Gogle, D. P., Lade, D. B., Moon, G. M., Nandeshwar, S. B., & Kumbhare, S. D. (2019). Nanobiopesticide formulations: Application strategies today and future perspectives. In O. Koul (Eds.), Nano-Biopesticides Today and Future Perspectives (pp. 179-206) Cham, Switzerland: Elsevier. https://doi.org/10.1016/B978-0-12-815829-6.00007-3

Landa, P., Cyrusova, T., Jerabkova, J., Drabek, O., Vanek, T., & Podlipna, R. (2016). Effect of Metal Oxides on Plant Germination: Phytotoxicity of Nanoparticles, Bulk Materials, and Metal Ions. Water, Air, and Soil Pollution, 227, 1-10. https://doi.org/10.1007/s11270-016-3156-9

Lead, J. R., Batley, G. E., Alvarez, P. J. J., Croteau, M.-N., Handy, R. D., Mclaughlin, M. J., Judy, J. D., & Schirmer, K. (2018). Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects — An Updated Review. Environmental Toxicology and Chemistry, 37(8), 2029-2063. https://doi.org/10.1002/etc.4147

Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.-C., Braam, J., & Alvarez, P. J. J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29(3), 669-675. https://doi.org/10.1002/etc.58

Li, X., Zhou, S., & Fan, W. (2016). Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus. International Journal of Environmental Research and Public Health, 13(6), 575. https://doi.org/10.3390/ijerph13060575

Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243-250. https://doi.org/10.1016/j.envpol.2007.01.016

Liu, J., Dhungana, B., & Cobb, G. P. (2017). Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environmental Toxicology and Chemistry, 37(1), 11-20. https://doi.org/10.1002/etc.3945

Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., & Fang, X. (2009). Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters, 9(3), 1007-1010. https://doi.org/10.1021/nl803083u

Liu, R., Zhang, H., & Lal, R. (2016). Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants or Nanonutrients? Water, Air, & Soil Pollution, 227, 42. https://doi.org/10.1007/s11270-015-2738-2

Liu, Y., Xu, L., & Dai, Y. (2018). Phytotoxic Effects of Lanthanum Oxide Nanoparticles on Maize (Zea mays L.). IOP Conference Series: Earth and Environmental Science, 113, 12020. https://doi.org/10.1088/1755-1315/113/1/012020

Loo, L., Guenther, R. H., Lommel, S. A., & Franzen, S. (2007). Encapsidation of Nanoparticles by Red Clover Necrotic Mosaic Virus. Journal of the American Chemical Society, 129(36), 11111-11117. https://doi.org/10.1021/ja071896b

López-Ráez, J. A., Matusova, R., Cardoso, C., Jamil, M., Charnikhova, T., Kohlen, W., Ruyter-spira, C., Verstappen, F., & Bouwmeester, H. (2008). Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Management Science, 65(5), 471-477. https://doi.org/10.1002/ps.1692

Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science: Nano, 6(1), 41-59. https://doi.org/10.1039/c8en00645h

Ma, C., Liu, H., Guo, H., Musante, C., Coskun, S. H., Nelson, B. C., White, J. C., Xing, B., & Dhankher, O. P. (2016). Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environmental Science: Nano, 3(6), 1369-1379. https://doi.org/10.1039/C6EN00189K

Ma, X., & Quah, B. (2016). Effects of Surface Charge on the Fate and Phytotoxicity of Gold Nanoparticles to Phaseolus vulgaris. Journal of Food Chemistry and Nanotechnology, 2(1), 57-65. https://doi.org/10.17756/jfcn.2016-011

Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010a). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of The Total Environment, 408(16), 3053-3061. https://doi.org/10.1016/j.scitotenv.2010.03.031

Ma, X., Gurung, A., & Deng, Y. (2013). Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Science of The Total Environment, 443, 844-849. https://doi.org/10.1016/j.scitotenv.2012.11.073

Ma, Y., Kuang, L., He, X., Bai, W., Ding, Y., Zhang, Z., Zhao, Y., & Chai, Z. (2010b). Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 78(3), 273-279. https://doi.org/10.1016/j.chemosphere.2009.10.050

Ma, Y., Zhang, P., Zhang, Z., He, X., Li, Y., Zhang, J., Zheng, L., Chu, S., Yang, K., Zhao, Y., & Chai, Z. (2014). Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, 9(2), 262-270. https://doi.org/10.3109/17435390.2014.921344

Maghsoodi, M. R., Lajayer, B. A., Hatami, M., & Mirjalili, M. H. (2019). Challenges and Opportunities of Nanotechnology in Plant-Soil Mediated Systems: Beneficial Role, Phytotoxicity, and Phytoextraction. In M. Ghorbanpour & S. H. Wani (Eds.), Advances in Phytonanotechnology (pp. 379-404) Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-12-815322-2.00018-3

Maiti, D., Tong, X., Mou, X., & Yang, K. (2019). Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Frontiers in Pharmacology, 9, 1401. https://doi.org/10.3389/fphar.2018.01401

Manna, I., & Bandyopadhyay, M. (2017). Engineered nickel oxide nanoparticles affect genome stability in Allium cepa (L.). Plant Physiology and Biochemistry, 121, 206-215. https://doi.org/10.1016/j.plaphy.2017.11.003

Martínez-Ballesta, M., Gil-Izquierdo, A., García-Viguera, C., & Domínguez-Perles, R. (2018). Nanoparticles and Controlled Delivery for Bioactive Compounds: Outlining Challenges for New “Smart-Foods” for Health. Foods, 7(5), 72. https://doi.org/10.3390/foods7050072

Martínez-Fernández, D., & Komárek, M. (2016). Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environmental and Experimental Botany, 131, 128-136. https://doi.org/10.1016/j.envexpbot.2016.07.010

Martínez-Fernández, D., Barroso, D., & Komárek, M. (2015). Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environmental Science and Pollution Research, 23, 1732-1741. https://doi.org/10.1007/s11356-015-5423-5

Martinson, C. A., & Reddy, K. J. (2009). Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. Journal of Colloid And Interface Science, 336(2), 406-411. https://doi.org/10.1016/j.jcis.2009.04.075

Mattiello, A., Filippi, A., Pošćić, F., Musetti, R., Salvatici, M. C., Giordano, C., Vischi, M., Bertolini, A., & Marchiol, L. (2015). Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. Exposed to CeO2 and TiO2 Nanoparticles. Frontiers in Plant Science, 6, 1043. https://doi.org/10.3389/fpls.2015.01043

Medina-Velo, I. A., Barrios, A. C., Zuverza-Mena, N., Hernandez-Viezcas, J. A., Chang, C. H., Ji, Z., Zink, J. I., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Comparison of the effects of commercial coated and uncoated ZnO nanomaterials and Zn compounds in kidney bean (Phaseolus vulgaris) plants. Journal of Hazardous Materials, 332, 214-222. https://doi.org/10.1016/j.jhazmat.2017.03.008

Modarresi, M., Chahardoli, A., Karimi, N., & Chahardoli, S. (2020). Variations of glaucine, quercetin and kaempferol contents in Nigella arvensis against Al2O3, NiO, and TiO2 nanoparticles. Heliyon, 6(6), e04265. https://doi.org/10.1016/j.heliyon.2020.e04265

Mornet, S., Vasseur, S., Grasset, F., & Duguet, E. (2004). Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry, 14, 2161-2175. https://doi.org/10.1039/b402025a

Mukherjee, A., Majumdar, S., Servin, A. D., Pagano, L., Dhankher, O. P., & White, J. C. (2016). Carbon nanomaterials in agriculture: A critical review. Frontiers in Plant Science, 7, 172. https://doi.org/10.3389/fpls.2016.00172

Mukherjee, A., Peralta-Videa, J. R., Bandyopadhyay, S., Rico, C. M., & Gardea-torresdey, J. L. (2014). Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics, 6(1), 132-138. https://doi.org/10.1039/c3mt00064h

Mukhopadhyay, S. S. (2014). Nanotechnology in agriculture: Prospects and constraints. Nanotechnology, Science and Applications, 7, 63-71. https://doi.org/10.2147/NSA.S39409

Nair, R. (2016). Effects of Nanoparticles on Plant Growth and Development. In C. Kole, D. S. Kumar, & M. V. Khodakovskaya (Eds.), Plant Nanotechnology, Principles and Practices (pp. 95-118) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-42154-4_5

Nair, R., & Kumar, D. S. (2013). Plant Diseases - Control and Remedy Through Nanotechnology. In N. Tuteja & S. S. Gill (Eds.), Crop Improvement Under Adverse Conditions (pp. 231-243). New York, US: Springer. https://doi.org/10.1007/978-1-4614-4633-0_10

Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179(3), 154-163. https://doi.org/10.1016/j.plantsci.2010.04.012

Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372-386. https://doi.org/10.1007/s10646-008-0214-0

Nhan, L. V., Ma, C., Rui, Y., Cao, W., Deng, Y., Liu, L., & Xing, B. (2016). The Effects of Fe2O3 Nanoparticles on Physiology and Insecticide Activity in Non-Transgenic and. Frontiers in Plant Science, 6, 1263. https://doi.org/10.3389/fpls.2015.01263

Nuruzzaman, M., Rahman, M. M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, Nano-Guard for Pesticides: A New Window for Safe Application. Journal of Agricultural and Food Chemistry, 64(7), 1447-1483. https://doi.org/10.1021/acs.jafc.5b05214

Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823-839. https://doi.org/10.1289/ehp.7339

Ojha, S., Singh, D., Sett, A., Chetia, H., Kabiraj, D., & Bora, U. (2018). Nanotechnology in Crop Protection. In D. K. Tripathi, P. Ahmad, S. Sharma, D. K. Chauhan, N. K. Dubey (Eds.), Nanomaterials in Plants, Algae, and Microorganisms (Vol. 1, pp. 345-391) Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-12-811487-2.00016-5

Oukarroum, A., Barhoumi, L., Samadani, M., & Dewez, D. (2015). Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L. BioMed Research International, 2015, 501326. https://doi.org/10.1155/2015/501326

Ouyang, S., Zhou, Q., Zeng, H., Wang, Y., & Hu, X. (2020). Natural Nanocolloids Mediate the Phytotoxicity of Graphene Oxide. Environmental Science & Technology, 54(8), 4865-4875. https://doi.org/10.1021/acs.est.9b07460

Pang, L.-J., Adeel, M., Shakoor, N., Guo, K.-R., Ma, D.-F., Ahmad, M. A., Lu, G.-Q., Zhao, M.-H., Li, S.-E., & Rui, Y.-K. (2021). Engineered Nanomaterials Suppress the Soft Rot Disease (Rhizopus stolonifer) and Slow Down the Loss of Nutrient in Sweet Potato. Nanomaterials, 11(10), 2572. https://doi.org/10.3390/nano11102572

Parisi, C., Vigani, M., & Rodriguez-Cerezo, E. (2015). Agricultural Nanotechnologies: What are the current possibilities? Nano Today, 10(2), 124-127. https://doi.org/10.1016/j.nantod.2014.09.009

Park, H.-J., Kim, S.-H., Kim, H.-J., & Choi, S.-H. (2006). A New Composition of Nanosized Silica-Silver for Control of Various Plant Diseases. The Plant Pathology Journal, 22(3), 295-302. https://doi.org/10.5423/PPJ.2006.22.3.295

Patel, G., Patra, C., Srinivas, S. P., Kumawat, M., Navya, P. N., & Daima, H. K. (2021). Methods to evaluate the toxicity of engineered nanomaterials for biomedical applications: a review. Environmental Chemistry Letters, 19, 4253-4274. https://doi.org/10.1007/s10311-021-01280-1

Pereira, S. P. P., Jesus, F., Aguiar, S., de Oliveira, R., Fernandes, M., Ranville, J., & Nogueira, A. J. A. (2018). Phytotoxicity of silver nanoparticles to Lemna minor: Surface coating and exposure period-related effects. Science of The Total Environment, 618, 1389-1399. https://doi.org/10.1016/j.scitotenv.2017.09.275

Pérez-de-Luque, A. (2017). Interaction of Nanomaterials with Plants: What Do We Need for Real Applications in Agriculture? Frontiers in Environmental Science, 5, 12. https://doi.org/10.3389/fenvs.2017.00012

Pérez-de-Luque, A., & Rubiales, D. (2009). Nanotechnology for parasitic plant control. Pest Management Science, 65(5), 540-545. https://doi.org/10.1002/ps.1732

Phan, K. S., Nguyen, H. T., Le, T. T. H., Vu, T. T. T., Do, H. D., Vuong, T. K. O., Nguyen, H. N., Tran, C. H., Ngo, T. T. H., & Ha, P. T. (2019). Fabrication and activity evaluation on Asparagus officinalis of hydroxyapatite based multimicronutrient nano systems. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10, 25011. https://doi.org/10.1088/2043-6254/ab21cc

Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14, 1109. https://doi.org/10.1007/s11051-012-1109-9

Pinto, M., Soares, C., Pinto, A. S., & Fidalgo, F. (2019). Phytotoxic effects of bulk and nano-sized Ni on Lycium barbarum L. grown in vitro - oxidative damage and antioxidant response. Chemosphere, 218, 507-516. https://doi.org/10.1016/j.chemosphere.2018.11.127

Pradhan, S., Patra, P., Das, S., Chandra, S., Mitra, S., Dey, K. K., Akbar, S., Palit, P., & Goswami, A. (2013). Photochemical Modulation of Biosafe Manganese Nanoparticles on Vigna radiata: A Detailed Molecular, Biochemical, and Biophysical Study. Environmental Science and Technology, 47, 13122-13131. https://doi.org/10.1021/es402659t

Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1014. https://doi.org/10.3389/fmicb.2017.01014

Prashanth, K. V. H., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential - an overview. Trends in Food Science & Technology, 18(3), 117-131. https://doi.org/10.1016/j.tifs.2006.10.022

Pullagurala, V. L. R., Adisa, I. O., Rawat, S., Kim, B., Barrios, A. C., Medina-Velo, I. A., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Finding the conditions for the beneficial use of ZnO nanoparticles towards plants-A review. Environmental Pollution, 241, 1175-1181. https://doi.org/10.1016/j.envpol.2018.06.036

Rahman, A., Wallis, C. M., & Uddin, W. (2015). Silicon-induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology, 105(6), 748-757. https://doi.org/10.1094/PHYTO-12-14-0378-R

Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94, 287-293. https://doi.org/10.1007/s00253-012-3969-4

Rajiv, P., Chen, X., Li, H., Rehaman, S., Vanathi, P., Abd-Elsalam, K. A., & Li, X. (2020). Silica-based nanosystems: Their role in sustainable agriculture. In K. A. Abd-Elsalam (Eds.), Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems (pp. 437-459) Cham, Switzerland: Elsevier. https://doi.org/10.1016/b978-0-12-821354-4.00018-2

Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V. S., Purvis, W. O., Ghazaryan, K. A., & Movsesyan, H. S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management, 9, 76-84. https://doi.org/10.1016/j.enmm.2017.12.006

Rajwade, J. M., Chikte, R. G., & Paknikar, K. M. (2020). Nanomaterials: new weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology, 104, 1437-1461. https://doi.org/10.1007/s00253-019-10334-y

Raliya, R., Saharan, V., Dimkpa, C., & Biswas, P. (2017). Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. Journal of Agricultural and Food Chemistry, 66(26), 6487-6503. https://doi.org/10.1021/acs.jafc.7b02178

Ramesh, M., Anbuvannan, M., & Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 864-870. https://doi.org/10.1016/j.saa.2014.09.105

Rico, C. M., Hong, J., Morales, M. I., Zhao, L., Barrios, A. C., Zhang, J.-Y., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2013). Effect of cerium oxide nanoparticles on rice: A study involving the antioxidant defense system and in vivo fluorescence imaging. Environmental Science and Technology, 47(11), 5635-5642. https://doi.org/10.1021/es401032m

Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain. Journal of Agricultural and Food Chemistry, 59(8), 3485-3498. https://doi.org/10.1021/jf104517j

Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., Zia-ur-Rehman, M., Farid, M., & Abbas, F. (2017). Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. Journal of Hazardous Materials, 322, 2-16. https://doi.org/10.1016/j.jhazmat.2016.05.061

Rui, M., Ma, C., Tang, X., Yang, J., Jiang, F., Pan, Y., Xiang, Z., Hao, Y., Rui, Y., Cao, W., & Xing, B. (2017). Phytotoxicity of Silver Nanoparticles to Peanut (Arachis hypogaea L.): Physiological Responses and Food Safety. ACS Sustainable Chemistry & Engineering, 5(8), 6557-6567. https://doi.org/10.1021/acssuschemeng.7b00736

Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L., & Adam, V. (2017). Nanoparticles based on essential metals and their phytotoxicity. Journal of Nanobiotechnology, 15, 33. https://doi.org/10.1186/s12951-017-0268-3

Saleh, A. M., Hassan, Y. M., Selim, S., & AbdElgawad, H. (2019). NiO-nanoparticles induce reduced phytotoxic hazards in wheat (Triticum aestivum L.) grown under future climate CO2. Chemosphere, 220, 1047-1057. https://doi.org/10.1016/j.chemosphere.2019.01.023

Salem, S. S., & Husen, A. (2023). Effect of engineered nanomaterials on soil microbiomes and their association with crop growth and production. In A. Husen (Eds.), Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management (pp. 311-336). Massachusetts, US: Academic Press. https://doi.org/10.1016/B978-0-323-91933-3.00010-6

Servin, A. D., & White, J. C. (2016). Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact, 1, 9-12. https://doi.org/10.1016/j.impact.2015.12.002

Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Jie, Z. (2019). Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules, 24(14), 2558. https://doi.org/10.3390/molecules24142558

Sharon, M., Choudhary, A. K., & Kumar, R. (2010). Nanotechnology in Agricultural Diseases and Food Safety. Journal of Phytology, 2(4), 83-92.

Shaviv, A. (2005). Environmental friendly nitrogen fertilization. Science in China Series C, Life Sciences, 48, 937-947.

Sheykhbaglou, R., Sedghi, M., Shishevan, M. T., & Sharifi, R. S. (2010). Effects of Nano-Iron Oxide Particles on Agronomic Traits of Soybean. Notulae Scientia Biologicae, 2(2), 112-113. https://doi.org/10.15835/nsb224667

Siddiqi, K. S., & Husen, A. (2017). Plant Response to Engineered Metal Oxide Nanoparticles. Nanoscale Research Letters, 12, 92. https://doi.org/10.1186/s11671-017-1861-y

Singh, A., Dhiman, N., Kar, A. K., Singh, D., Purohit, M. P., Ghosh, D., & Patnaik, S. (2020a). Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of Hazardous Materials, 385, 121525. https://doi.org/10.1016/j.jhazmat.2019.121525

Singh, P., Prasuhn, D., Yeh, R. M., Destito, G., Rae, C. S., Osborn, K., Finn, M. G., & Manchester, M. (2007). Bio-distribution , toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. Journal of Controlled Release, 120(1-2), 41-50. https://doi.org/10.1016/j.jconrel.2007.04.003

Singh, R. P., Handa, R., & Manchanda, G. (2020b). Nanoparticles in sustainable agriculture: An emerging opportunity. Journal of Controlled Release, 329, 1234-1248. https://doi.org/10.1016/j.jconrel.2020.10.051

Soares, C., Branco-Neves, S., de Sousa, A., Pereira, R., & Fidalgo, F. (2016). Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: Combining standardized procedures and physiological endpoints. Chemosphere, 165, 442-452. https://doi.org/10.1016/j.chemosphere.2016.09.053

Sousa, C. A., Soares, H. M. V. M., & Soares, E. V. (2018). Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater alga Pseudokirchneriella subcapitata. Aquatic Toxicology, 204, 80-90. https://doi.org/10.1016/j.aquatox.2018.08.022

Sousa, C. A., Soares, H. M. V. M., & Soares, E. V. (2019). Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms. Aquatic Toxicology, 214, 105265. https://doi.org/10.1016/j.aquatox.2019.105265

Speranza, A., Crinelli, R., Scoccianti, V., Taddei, A. R., Iacobucci, M., Bhattacharya, P., & Ke, P. C. (2013). In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environmental Pollution, 179, 258-267. https://doi.org/10.1016/j.envpol.2013.04.021

Speranza, A., Leopold, K., Maier, M., Taddei, A. R., & Scoccianti, V. (2010). Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II). Environmental Pollution, 158(3), 873-882. https://doi.org/10.1016/j.envpol.2009.09.022

Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology, 43(24), 9473-9479. https://doi.org/10.1021/es901695c

Štefanić, P. P., Jarnević, M., Cvjetko, P., Biba, R., Šikić, S., Tkalec, M., Cindrić, M., Letofsky-Papst, I., & Balen, B. (2019). Comparative proteomic study of phytotoxic effects of silver nanoparticles and silver ions on tobacco plants. Environmental Science and Pollution Research, 26, 22529-22550. https://doi.org/10.1007/s11356-019-05552-w

Steinmetz, N. F., & Evans, D. J. (2007). Utilisation of plant viruses in bionanotechnology. Organic & Biomolecular Chemistry, 5(18), 2891-2902. https://doi.org/10.1039/b708175h

Tamez, C., Hernandez-Molina, M., Hernandez-Viezcas, J. A., & Gardea-Torresdey, J. L. (2019). Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo). Science of The Total Environment, 665, 100-106. https://doi.org/10.1016/j.scitotenv.2019.02.029

Taylor, A. F., Rylott, E. L., Anderson, C. W. N., & Bruce, N. C. (2014). Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One, 9(4), e93793. https://doi.org/10.1371/journal.pone.0093793

Tiwari, M., Sharma, N. C., Fleischmann, P., Burbage, J., Venkatachalam, P., & Sahi, S. V. (2017). Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Frontiers in Plant Science, 8, 633. https://doi.org/10.3389/fpls.2017.00633

Torney, F., Trewyn, B. G., Lin, V. S.-Y., & Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2, 295-300. https://doi.org/10.1038/nnano.2007.108

Trenkel, M. E. (2010). Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. (2nd ed.). Paris. France: International Fertilizer Industry Association.

Tripathi, D. K., Shweta, Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., Prasad, S. M., Dubey, N. K., & Chauhan, D. K. (2017). An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110, 2-12. https://doi.org/10.1016/j.plaphy.2016.07.030

Tu, Q., Yang, T., Qu, Y., Gao, S., Zhang, Z., Zhang, Q., Wang, Y., Wang, J., & He, L. (2019). In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Analyst, 144(6), 2017-2025. https://doi.org/10.1039/c8an02473a

Umapathi, A., Kumawat, M., & Daima, H. K. (2022). Engineered nanomaterials for biomedical applications and their toxicity: a review. Environmental Chemistry Letters, 20, 445-468. https://doi.org/10.1007/s10311-021-01307-7

Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment, 721, 137778. https://doi.org/10.1016/j.scitotenv.2020.137778

Verma, S. K., Das, A. K., Patel, M. K., Shah, A., Kumar, V., & Gantait, S. (2018). Engineered nanomaterials for plant growth and development: A perspective analysis. Science of The Total Environment, 630, 1413-1435. https://doi.org/10.1016/j.scitotenv.2018.02.313

Vishwakarma, K., Shweta, Upadhyay, N., Singh, J., Liu, S., Singh, V. P., Prasad, S. M., Chauhan, D. K., Tripathi, D. K., & Sharma, S. (2017). Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Frontiers in Plant Science, 8, 1501. https://doi.org/10.3389/fpls.2017.01501

Vurro, M., Boari, A., Evidente, A., Andolf, A., & Zermane, N. (2009). Natural metabolites for parasitic weed management. Pest Management Science, 65(5), 566-571. https://doi.org/10.1002/ps.1742

Wang, C., Liu, X., Chen, F., Yue, L., Cao, X., Li, J., Cheng, B., Wang, Z., & Xing, B. (2022). Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. Environmental Pollution, 308, 119582. https://doi.org/10.1016/J.ENVPOL.2022.119582

Wang, P., Lombi, E., Zhao, F.-J., & Kopittke, P. M. (2016). Nanotechnology: A New Opportunity in Plant Sciences. Trends in Plant Science, 21(8), 699-712. https://doi.org/10.1016/j.tplants.2016.04.005

Wang, Q., Ebbs, S. D., Chen, Y., & Ma, X. (2013). Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics, 5(6), 753-759. https://doi.org/10.1039/c3mt00033h

Wang, Q., Ma, X., Zhang, W., Pei, H., & Chen, Y. (2012). The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics, 4(10), 1105-1112. https://doi.org/10.1039/c2mt20149f

Weisany, W., & Khosropour, E. (2023). Engineered nanomaterials in crop plants drought stress management. In A. Husen (

Eds.), Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management (pp. 183-204) Cambridge, US: Academic Press. https://doi.org/10.1016/B978-0-323-91933-3.00005-2

Worrall, E. A., Hamid, A., Mody, K. T., Mitter, N., & Pappu, H. R. (2018). Nanotechnology for plant disease management. Agronomy, 8(12), 285. https://doi.org/10.3390/agronomy8120285

Wu, S. G., Huang, L., Head, J., Chen, D.-R., Kong, I.-C., & Tang, Y. J. (2012). Phytotoxicity of Metal Oxide Nanoparticles is Related to Both Dissolved Metals Ions and Adsorption of Particles on Seed Surfaces. Journal of Petroleum & Environmental Biotechnology, 3(4), 1000126. https://doi.org/10.4172/2157-7463.1000126

Xie, C., Ma, Y., Yang, J., Zhang, B., Luo, W., Feng, S., Zhang, J., Wang, G., He, X., & Zhang, Z. (2019). Effects of foliar applications of ceria nanoparticles and CeCl3 on common bean (Phaseolus vulgaris). Environmental Pollution, 250, 530-536. https://doi.org/10.1016/j.envpol.2019.04.042

Xiong, T. T., Dumat, C., Dappe, V., Vezin, H., Schreck, E., Shahid, M., Pierart, A., & Sobanska, S. (2017). Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture. Environmental Science and Technology, 51(9), 5242-5251. https://doi.org/10.1021/acs.est.6b05546

Xu, C., & Wang, X. (2012). Graphene oxide-mediated synthesis of stable metal nanoparticle colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 404, 78-82. https://doi.org/10.1016/j.colsurfa.2012.04.017

Yan, A., & Chen, Z. (2019). Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 20(5), 1003. https://doi.org/10.3390/ijms20051003

Yang, J., Cao, W., & Rui, Y. (2017). Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms. Journal of Plant Interactions, 12(1), 158-169. https://doi.org/10.1080/17429145.2017.1310944

Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158(2), 122-132. https://doi.org/10.1016/j.toxlet.2005.03.003

Yang, W., Ratinac, K. R., Ringer, S. P., Thordarson, P., Gooding, J. J., & Braet, F. (2010). Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene? Angewandte Chemie, 49(12), 2114-2138. https://doi.org/10.1002/anie.200903463

Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C., & Wang, L. (2015). Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.). International Journal of Environmental Research and Public Health, 12(12), 15100-15109. https://doi.org/10.3390/ijerph121214963

Youssef, M. S., & Elamawi, R. M. (2018). Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. Environmental Science and Pollution Research, 27, 18972-18984. https://doi.org/10.1007/s11356-018-3250-1

Yuan, J., Chen, Y., Li, H., Lu, J., Zhao, H., Liu, M., Nechitaylo, G. S., & Glushchenko, N. N. (2018). New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Scientific Reports, 8, 3228. https://doi.org/10.1038/s41598-017-18055-w

Zhang, C. L., Jiang, H. S., Gu, S. P., Zhou, X. H., Lu, Z. W., Kang, X. H., Yin, L., & Huang, J. (2019a). Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Environmental Pollution, 252, 1539-1549. https://doi.org/10.1016/j.envpol.2019.06.032

Zhang, P., Ma, Y., Xie, C., Guo, Z., He, X., Valsami-Jones, E., Lynch, I., Luo, W., Zheng, L., & Zhang, Z. (2019b). Plant species-dependent transformation and translocation of ceria nanoparticles. Environmental Science: Nano, 6(1), 60-67. https://doi.org/10.1039/c8en01089g

Zhang, P., Ma, Y., Zhang, Z., He, X., Li, Y., Zhang, J., Zheng, L., & Zhao, Y. (2013). Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology, 9(1), 1-8. https://doi.org/10.3109/17435390.2013.855829

Zhang, P., Zhang, Z., He, X., Guo, Z., Tai, R., Ding, Y., Zhao, Y., & Chai, Z. (2012). Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environmental Science and Technology, 46(3), 1834-1841. https://doi.org/10.1021/es2027295

Zhao, L., Huang, Y., Hu, J., Zhou, H., Adeleye, A. S., & Keller, A. A. (2016). 1H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxi fi cation Mechanism of Cucumber Plant under Nano-Cu Stress. Environmental Science and Technology, 50(4), 2000-2010. https://doi.org/10.1021/acs.est.5b05011

Zhao, S., Wang, Q., Zhao, Y., Rui, Q., & Wang, D. (2015). Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environmental Toxicology and Pharmacology, 39(1), 145-156. https://doi.org/10.1016/j.etap.2014.11.014

Zhao, X., Zhang, W., He, Y., Wang, L., Li, W., Yang, L., & Xing, G. (2021). Phytotoxicity of Y2O3 nanoparticles and Y3+ ions on rice seedlings under hydroponic culture. Chemosphere, 263, 127943. https://doi.org/10.1016/j.chemosphere.2020.127943

Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Sergi, M.-B. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270. https://doi.org/10.1016/j.plantsci.2019.110270

Published

22-02-2024

How to Cite

Patil, V. W., Suryawanshi, N. S., Bokhad, M. N., Parsodkar, V. J., & Narhe, A. S. (2024). Engineered nanomaterials in plant protection: their controlled, site-directed delivery and phytotoxicity. Current Botany, 15, 7–24. https://doi.org/10.25081/cb.2024.v15.7906

Issue

Section

Regular Articles