Anti-biofilm activity of Barleria acanthoides Vahl against Methicillin-resistant Staphylococcus aureus

Authors

  • S. Lourdu Pouline Plant Molecular Biology Research Unit (PMRU), Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai-627002, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012) https://orcid.org/0009-0002-4596-8958
  • Sathyananth Murugesan Plant Molecular Biology Research Unit (PMRU), Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai-627002, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012)
  • T. Leon Stephan Raj Plant Molecular Biology Research Unit (PMRU), Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai-627002, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012) https://orcid.org/0000-0001-6231-5962

DOI:

https://doi.org/10.25081/cb.2024.v15.9184

Keywords:

MRSA, Barleria acanthoides, Molecular docking, Antibiofilm, Quorum sensing inhibition

Abstract

Methicillin-resistant Staphylococcu aureus (MRSA) biofilms are notoriously difficult to treat due to their high resistance to antibiotics. This study examines the antibiofilm, antibacterial, and molecular docking potential of Barleria acanthoides ethanol extract against MRSA. A total of 18 compounds were identified in GC-MS analysis and the major compounds were beta-asarone (34.09%), Neophytadiene (15.09%) and caryophyllene (9.65%). The extract was very good at killing bacteria; at a minimum inhibitory concentration (MIC) of 0.5 mg/mL, it stopped MRSA biofilm formation by 80.07%. Molecular docking studies revealed the binding affinities of key compounds to regulatory proteins LasR and SarA, which are essential in biofilm formation and quorum sensing. These findings suggest B. acanthoides as a promising source for developing new therapeutic agents to combat MRSA biofilm-related infections.

Downloads

Download data is not yet available.

References

Amoo, S. O., Ndhlala, A. R., Finnie, J. F., & Van Staden, J. (2011). Antifungal, acetylcholinesterase inhibition, antioxidant and phytochemical properties of three Barleria species. South African Journal of Botany, 77(2), 435-445. https://doi.org/10.1016/j.sajb.2010.11.002

Aneja, K. R., Joshi, R., & Sharma, C. (2010). Potency of Barleria prionitis L. bark extracts against oral diseases causing strains of bacteria and fungi of clinical origin. New York Science Journal, 3(11), 5-12.

Arunan, B., Ahmed, N. H., Kapil, A., Vikram, N. K., Sinha, S., Biswas, A., Satpathy, G., & Wig, N. (2023). Central Line-Associated Bloodstream Infections: Effect of Patient and Pathogen Factors on Outcome. Journal of Global Infectious Diseases, 15(2), 59-65. https://doi.org/10.4103/jgid.jgid_213_22

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and Chemical Toxicology, 46(2), 446-475. https://doi.org/10.1016/j.fct.2007.09.106

Bottomley, M. J., Muraglia, E., Bazzo, R., & Carfì, A. (2007). Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. Journal of Biological Chemistry, 282(18), 13592-13600. https://doi.org/10.1074/jbc.M700556200

Brehm-Stecher, B. F., & Johnson, E. A. (2003). Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrobial Agents and Chemotherapy, 47(10), 3357-3360. https://doi.org/10.1128/aac.47.10.3357-3360.2003

Elfaky, M. A. (2024). Unveiling the hidden language of bacteria: anti-quorum sensing strategies for gram-negative bacteria infection control. Archives of Microbiology, 206, 124. https://doi.org/10.1007/s00203-024-03900-0

Essar, D. W., Eberly, L., Hadero, A., & Crawford, I. P. (1990). Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. Journal of Bacteriology, 172(2), 884-900. https://doi.org/10.1128/jb.172.2.884-900.1990

Jaiswal, S. K., Dubey, M. K., Das, S., Verma, A. R., & Rao, Ch. V. (2010). A comparative study on total phenolic content, reducing power and free radical scavenging activity of aerial parts of Barleria prionitis. International Journal of Phytomedicine, 2(2), 155-159.

Jiao, S., Zhang, R., Li, J., Shana, W., Zhang, H. G., Tu, P., & Chai, X. (2018). Research progress on hopane-type sesquiterpenes and their pharmacological activities. Chinese Journal of Traditional Chinese Materia Medica, 22, 4380-4390. https://doi.org/10.19540/j.cnki.cjcmm.20180725.001

Kavanaugh, J. S., & Horswill, A. R. (2016). Impact of environmental cues on staphylococcal quorum sensing and biofilm development. Journal of Biological Chemistry, 291(24), 12556-12564. https://doi.org/10.1074/jbc.R116.722710

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388-D1395. https://doi.org/10.1093/nar/gkaa971

Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8, 423-435. https://doi.org/10.1038/nrmicro2333

Kuete, V. (2010). Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Medica, 76(14), 1479-1491. https://doi.org/10.1055/s-0030-1250027

Lee, J. Y., Lee, J. Y., Yun, B.-S., & Hwang, B. K. (2004). Antifungal activity of β-asarone from rhizomes of Acorusgramineus. Journal of Agricultural and Food Chemistry, 52(4), 776-780. https://doi.org/10.1021/jf035204o

Lim, S.-Y., Bauermeister, A., Kjonaas, R. A., & Ghosh, S. K. (2006). Phytol-based novel adjuvants in vaccine formulation: 2. Assessment of efficacy in the induction of protective immune responses to lethal bacterial infections in mice. Journal of Immune Based Therapies and Vaccines, 4, 5. https://doi.org/10.1186/1476-8518-4-5

Moormeier, D. E., & Bayles, K. W. (2017). Staphylococcus aureus biofilm: a complex developmental organism. Molecular Microbiology, 104(3), 365-376. https://doi.org/10.1111/mmi.13634

Morales, E., González-Valdez, A., Soberón-Chávez, G., & Servín-González, L. (2017). Pseudomonas aeruginosa quorum-sensing response in the absence of functional LasR and LasI proteins: the case of strain 148, a virulent dolphin isolate. FEMS Microbiology Letters, 364(12), fnx119. https://doi.org/10.1093/femsle/fnx119

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256

Mudaliar, S. B., & Prasad, A. S. B. (2024). A biomedical perspective of pyocyanin from Pseudomonas aeruginosa: its applications and challenges. World Journal of Microbiology and Biotechnology, 40, 90. https://doi.org/10.1007/s11274-024-03889-0

Neagu, R., Popovici, V., Ionescu, L. E., Ordeanu, V., Popescu, D. M., Ozon, E. A., & Gîrd, C. E. (2023). Antibacterial and antibiofilm effects of different samples of five commercially available essential oils. Antibiotics, 12(7), 1191. https://doi.org/10.3390/antibiotics12071191

Paharik, A. E., & Horswill, A. R. (2016). The staphylococcal biofilm: adhesins, regulation, and host response. In I. T. Kudva, N. A. Cornick, P. J. Plummer, Q. Zhang, T. L. Nicholson, J. P. Bannantine & B. H. Bellaire (Eds.), Virulence mechanisms of bacterial pathogens (pp. 529-566) Washington, DC: ASM Press. https://doi.org/10.1128/9781555819286.ch19

Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14, 576-588. https://doi.org/10.1038/nrmicro.2016.89

Park, M., Kim, J., Horn, L., Haan, J., Strickland, A., Lappi, V., Boxrud, D., Hedberg, C., Ryu, S., & Jeon, B. (2022). Sugar modification of wall teichoic acids determines serotype-dependent strong biofilm production in Listeria monocytogenes. Microbiology Spectrum, 10(5), e02769-22. https://doi.org/10.1128/spectrum.02769-22

Pejin, B., Ciric, A., Glamoclija, J., Nikolic, M., & Sokovic, M. (2015). In vitro anti-quorum sensing activity of phytol. Natural Product Research, 29(4), 374-377. https://doi.org/10.1080/14786419.2014.945088

Saurav, K., Bar-Shalom, R., Haber, M., Burgsdorf, I., Oliviero, G., Costantino, V., Morgenstern, D., & Steindler, L. (2016). In search of alternative antibiotic drugs: Quorum-quenching activity in sponges and their bacterial isolates. Frontiers in Microbiology, 7, 416. https://doi.org/10.3389/fmicb.2016.00416

Subramenium, G. A., Vijayakumar, K., & Pandian, S. K. (2015). Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. Journal of Medical Microbiology, 64(8), 879-890. https://doi.org/10.1099/jmm.0.000105

Traczewski, M. M., Katz, B. D., Steenbergen, J. N., & Brown, S. D. (2009). Inhibitory and Bactericidal Activities of Daptomycin, Vancomycin, and Teicoplanin against Methicillin-Resistant Staphylococcus aureus Isolates Collected from 1985 to 2007. Antimicrobial Agents and Chemotherapy, 53(5), 1735-1738. https://doi.org/10.1128/aac.01022-08

Trotonda, M. P., Manna, A. C., Cheung, A. L., Lasa, I., & Penadés, J. R. (2005). SarA positively controls Bap-dependent biofilm formation in Staphylococcus aureus. Journal of Bacteriology, 187(16), 5790-5798. https://doi.org/10.1128/JB.187.16.5790-5798.2005

Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334

Valle, J., Toledo-Arana, A., Berasain, C., Ghigo, J.-M., Amorena, B., Penadés, J. R., & Lasa, I. (2003). SarA and not σB is essential for biofilm development by Staphylococcus aureus. Molecular Microbiology, 48(4), 1075-1087. https://doi.org/10.1046/j.1365-2958.2003.03493.x

Wang, Y.-X., Deng, Z., Bibi, A., Fang, B., & Zhou, C.-H. (2024). Unique Azolyl Acylhydrazonyl hybridization of Aloe emodins to access potential antibacterial agents. Chinese Journal of Chemistry, 42(15), 1741-1758. https://doi.org/10.1002/cjoc.202400160

Zhou, L., Zhang, Y., Ge, Y., Zhu, X., & Pan, J. (2020). Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation. Frontiers in Microbiology, 11, 589640. https://doi.org/10.3389/fmicb.2020.589640

Published

30-12-2024

How to Cite

Pouline, S. L., Murugesan, S., & Raj, T. L. S. (2024). Anti-biofilm activity of Barleria acanthoides Vahl against Methicillin-resistant Staphylococcus aureus. Current Botany, 15, 157–163. https://doi.org/10.25081/cb.2024.v15.9184

Issue

Section

Regular Articles