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INTRODUCTION

Staphylococcus aureus, particularly methicillin-resistant S. aureus 
(MRSA), represents a significant global health challenge due 
to its ability to form resilient biofilms (Arunan et al., 2023). 
These complex microbial communities, characterized by dense 
bacterial populations encased in a self-produced extracellular 
polymeric substance (EPS), contribute substantially to the 
pathogenesis of various life-threatening infections (Kavanaugh 
& Horswill, 2016). The biofilm matrix, primarily composed 
of polysaccharides, proteins, and extracellular DNA, confers 
remarkable resistance to antimicrobial agents and host immune 
responses, with antibiotic tolerance up to 1,000-fold higher than 
planktonic cells.

The formation of S. aureus biofilms involves a highly regulated, 
multi-stage process influenced by environmental factors 
and governed by intricate regulatory networks, including 
transcriptional regulators and quorum-sensing systems 
(Moormeier & Bayles, 2017). Recent research has elucidated 
key molecular mechanisms underlying biofilm development, 
revealing potential targets for therapeutic intervention (Paharik 
& Horswill, 2016). However, the increasing prevalence of 

antibiotic-resistant strains necessitates the exploration of novel 
anti-biofilm strategies.

In this context, phytochemicals have emerged as promising 
candidates for combating bacterial biofilms. The genus Barleria 
(Acanthaceae) has garnered particular interest due to its rich 
repertoire of bioactive compounds, including iridoids, flavonoids, 
and phenolic acids, which exhibit significant antibacterial and 
anti-biofilm properties (Amoo et al., 2011; Jaiswal et al., 2010). 
These phytochemicals have been shown to disrupt bacterial cell 
membranes and interfere with quorum sensing, critical processes 
in biofilm formation (Aneja et al., 2010).

Barleria acanthoides, a species within this genus, represents 
an untapped resource for potential anti-biofilm agents. Given 
the urgent need for novel therapeutic strategies against MRSA 
biofilms, investigating the antibacterial and anti-biofilm 
efficacy of B. acanthoides is highly warranted. This study 
aims to evaluate the effects of B. acanthoides extracts on 
S. aureus biofilm formation, with a specific focus on Assessing 
the antibacterial activity against planktonic and biofilm-
associated S. aureus, investigating the impact on quorum 
sensing mechanisms and elucidating the molecular basis of 
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observed anti-biofilm effects through in silico analysis of key 
regulatory proteins.

By integrating phytochemical analysis, microbiological assays, 
and molecular docking studies, this research seeks to provide 
comprehensive insights into the potential of B. acanthoides as 
a source of novel anti-biofilm compounds. The findings may 
contribute to the development of innovative strategies for 
managing MRSA infections and addressing the growing threat 
of antimicrobial resistance in biofilm-associated infections.

MATERIALS AND METHODS

Plant Material and Extract Preparation

Fresh leaves of Barleria acanthoides Vahl were collected from 
Sivanthipatti, Tirunelveli (8.7647° N, 77.8042° E), Tamil Nadu, 
India, in February 2024. The plant material was authenticated, 
and a voucher specimen was deposited in the institutional 
herbarium (voucher number: BA2024-01).

Leaves were washed with distilled water, air-dried at room 
temperature (25±2 °C) and pulverized using a mechanical 
grinder. The resulting powder was stored in airtight containers 
at 4 °C until use. Ethanol extraction was performed using a 
cold maceration technique (Azwanida, 2015). Briefly, 50 g of 
dried leaf powder was soaked in 500  mL of analytical grade 
ethanol (Sigma-Aldrich, USA) for 72 hours at room temperature 
with intermittent agitation. The mixture was filtered through 
Whatman No. 1 filter paper, and the filtrate was concentrated 
under reduced pressure at 45 °C using a rotary evaporator (Buchi 
R-300, Switzerland). The resulting crude extract was stored 
at -20 °C in amber glass vials until further analysis.

Phytochemical Profiling

Gas Chromatography-Mass Spectrometry (GC-MS) Analysis: 
Chemical profiling of the ethanolic extract was performed 
using a Thermo Scientific Trace GC1310-ISQ system equipped 
with a TG-5MS capillary column (30 m × 0.25 mm, 0.25 μm 
film thickness). The GC oven temperature was programmed 
as follows: initial temperature 50 °C (2 min hold), ramped to 
230 °C at 5 °C/min (2 min hold), then to 290 °C at 30 °C/min 
(2 min hold). Helium was used as the carrier gas at a constant 
flow rate of 1 mL/min. Samples (1 μL) were injected in split 
mode with a 10:1 ratio. Mass spectrometric data were acquired in 
full scan mode (m/z 40-1000) with an electron ionization energy 
of 70 eV and ion source temperature of 200 °C. Compound 
identification was performed by comparing mass spectra with 
the NIST 11 spectral library.

Antimicrobial Susceptibility Testing

Minimum Inhibitory Concentration (MIC) and Minimum 
Bactericidal Concentration (MBC): The MIC and MBC of 
the ethanolic extract against Staphylococcus aureus (ATCC 
25923) were determined using the broth microdilution method 
according to Clinical and Laboratory Standards Institute 

(CLSI) guidelines (CLSI, 2018). Briefly, two-fold serial 
dilutions of the extract (64 to 0.125 mg/mL) were prepared in 
Mueller-Hinton broth (MHB) in 96-well microplates. Bacterial 
inoculum was prepared from fresh culture and adjusted to 5 
× 105 CFU/mL. Equal volumes (100 μL) of extract dilutions 
and bacterial suspension were mixed and incubated at 37 °C 
for 24 hours. The MIC is defined as the lowest concentration 
that inhibited visible bacterial growth, as indicated by the 
absence of turbidity. For MBC determination, aliquots (10 
μL) from wells showing no visible growth were sub-cultured 
on Mueller-Hinton agar plates and incubated at 37 °C for 24 
hours. The MBC is defined as the lowest concentration that 
resulted in no bacterial growth on agar plates. All assays were 
performed in triplicate with appropriate positive (streptomycin) 
and negative (sterile MHB) controls.

Anti-quorum Sensing Activity

Pyocyanin Quantification Assay: The effect of B. acanthoides 
extract on quorum sensing was assessed by quantifying 
pyocyanin production in Pseudomonas aeruginosa PAO1, as 
described by Essar et al. (1990) with modifications. P. aeruginosa 
was cultured in Luria-Bertani broth supplemented with sub-
inhibitory concentrations of the extract (0.25, 0.5 and 1 mg/mL) 
and incubated at 37 °C for 24 hours with shaking at 200 rpm. 
Cultures were centrifuged at 10,000 × g for 10 minutes at 4 °C. 
Pyocyanin was extracted from 5 mL of supernatant using 3 mL 
of chloroform, followed by re-extraction with 1 mL of 0.2 M HCl. 
The absorbance of the resulting pink-red solution was measured 
at 520 nm using a UV-Vis spectrophotometer (Shimadzu UV-
1800, Japan). Pyocyanin concentration (μg/mL) was calculated 
by multiplying the OD520 by 17.072 (Saurav et al., 2016).

Anti-biofilm Activity

Crystal Violet Biofilm Assay: The anti-biofilm activity of the 
extract against methicillin-resistant S. aureus (MRSA) was 
evaluated using a modified tube biofilm assay (Park et al., 2022). 
MRSA (clinical isolate) was cultured overnight in tryptic soy 
broth (TSB) at 37 °C. The culture was diluted to 1 × 106 CFU/
mL in fresh TSB supplemented with varying concentrations 
of the extract (10, 25 and 50 mg/mL). Aliquots (5 mL) were 
dispensed into sterile glass tubes and incubated at 37 °C for 24 
hours to allow biofilm formation.

Following incubation, the tubes were gently washed twice with 
phosphate-buffered saline (PBS, pH 7.4) to remove planktonic 
cells. Adherent biofilms were stained with 0.1% (w/v) crystal 
violet solution for 30  minutes at room temperature. Excess 
stain was removed by thorough washing with PBS. The bound 
crystal violet was solubilized using 5 mL of 33% acetic acid, 
and the absorbance was measured at 595 nm. The percentage 
of biofilm inhibition was calculated relative to the untreated 
control using the formula:

% Biofilm inhibition = [(OD control - OD treatment)/OD 
control] × 100
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Antibacterial Activity

Agar Well Diffusion Assay: The antibacterial activity of the 
ethanolic extract was evaluated using the agar well diffusion 
method as per CLSI guidelines (CLSI, 2018). Test organisms 
included Staphylococcus aureus (ATCC 25923), Escherichia 
coli (ATCC 25922), Enterococcus faecalis (ATCC 29212), 
and Vibrio cholerae (clinical isolate). Bacterial suspensions 
(1.5 × 108 CFU/mL, equivalent to 0.5 McFarland standard) were 
spread on Mueller-Hinton agar plates. Wells (6 mm diameter) 
were punched in the agar and filled with 50 μL of extract 
at concentrations of 10, 50, and 100  mg/mL. Streptomycin 
(10 μg/well) served as a positive control, while 70% DMSO was 
used as a negative control. Plates were incubated at 37 °C for 
24 hours, after which zones of inhibition were measured. All 
assays were performed in triplicate.

Molecular Docking Analysis

In silico molecular docking studies were conducted to investigate 
the potential interactions between major phytoconstituents 
identified by GC-MS and key bacterial proteins involved in 
biofilm formation and quorum sensing. The 3D structures of 
target proteins, including SarA (PDB ID: 2FNP) from S. aureus, 
LasR (PDB ID: 4NG2) from P. aeruginosa, and tyrosyl-tRNA 
synthetase (PDB ID: 1JIJ) from S. aureus, were obtained from 
the Protein Data Bank (Berman et al., 2000). Ligand structures 
were retrieved from the PubChem database (Kim et al., 2021).

Protein and ligand structures were prepared using AutoDock 
Tools (Morris et al., 2009). Docking simulations were performed 
using AutoDockVina (Trott & Olson, 2010) with a grid box 
encompassing the ligand binding sites of each protein target. 
The docking results were analysed and visualized using Biovia 
Discovery Studio.

Statistical Analysis

All experiments were performed in triplicate, and data are 
presented as mean±standard deviation (SD). Statistical analysis 
was conducted using SPSS version 25.0 (IBM Corp., Armonk, 
NY, USA). Differences between groups were analysed using one-
way ANOVA followed by Tukey’s post-hoc test. A p-value<0.05 
was considered statistically significant.

RESULTS AND DISCUSSION

Phytochemical Analysis

Gas Chromatography-Mass Spectrometry (GC-MS) 
analysis of the ethanolic extract of B. acanthoides revealed a 
complex phytochemical profile (Figure  1 and Table  1). The 
major constituents identified were beta-asarone (34.09%), 
neophytadiene (15.09%), caryophyllene (9.65%), phytol 
(8.79%), and germacrene D (4.97%). These compounds have 
been previously reported to possess significant antimicrobial 
and anti-biofilm properties (Brehm-Stecher & Johnson, 
2003; Jiao et al., 2018).	 Beta-asarone, the most abundant 

compound, has demonstrated potent antifungal activity (Lee 
et al., 2004) and may contribute to the extract’s antimicrobial 
effects. Caryophyllene and humulene, both sesquiterpenes, 
are known to disrupt bacterial cell membranes (Bakkali et al., 
2008), while phytol has been shown to enhance the activity 
of other antibacterial agents through membrane perturbation 
(Lim et al., 2006). The presence of these bioactive compounds 
suggests a potential synergistic effect, which could explain the 
broad-spectrum antimicrobial activity observed in subsequent 
assays.

Antimicrobial Susceptibility

The ethanolic extract of B. acanthoides exhibited notable 
antimicrobial activity against both Gram-positive and Gram-
negative bacteria. The minimum inhibitory concentration 
(MIC) and minimum bactericidal concentration (MBC) against 
S. aureus were determined to be 0.5  mg/mL and 1  mg/mL, 
respectively. This low MIC value (<1  mg/mL) indicates 
high antimicrobial potency, as plant extracts with MICs 
below 1  mg/mL are generally considered to have significant 
antimicrobial activity (Kuete, 2010). The MBC/MIC ratio of 
2:1 suggests that the extract possesses bactericidal rather than 
bacteriostatic activity against S. aureus (Traczewski et al., 2009). 
This bactericidal nature implies that the extract may target 
multiple bacterial cellular processes, a characteristic that could 
potentially mitigate the development of resistance (Kohanski 
et al., 2010).

Anti-quorum Sensing Activity

The B. acanthoides extract demonstrated a concentration-
dependent inhibition of pyocyanin production in P. aeruginosa. 
Pyocyanin, a blue-green pigment, is both a virulence factor and 
a quorum sensing signal molecule in P. aeruginosa (Mudaliar & 
Prasad, 2024). The minimum concentration of the extract that 
inhibited pyocyanin production was found to be 0.12 mg/mL, 
indicating potent anti-quorum sensing activity.

This inhibition of pyocyanin production suggests that 
compounds within the extract may interfere with key regulatory 
proteins in the quorum sensing pathway, such as LasR or RhlR 
(Papenfort & Bassler, 2016). The ability to disrupt bacterial 

Figure 1: GCMS analysis of B. acanthoides
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communication without directly inhibiting growth represents 
a promising strategy for anti-virulence therapy, potentially 
reducing the risk of resistance development (Elfaky, 2024).

Anti-biofilm Activity

The ethanolic extract of B. acanthoides demonstrated 
remarkable anti-biofilm activity against methicillin-resistant 
S. aureus (MRSA), reducing biofilm formation by 80.07% at the 
highest tested concentration of 50 mg/mL. This potent effect 
can be attributed to the extract’s diverse phytochemical profile, 
which includes compounds known to interfere with bacterial 
attachment and biofilm maturation. Beta-asarone, for instance, 
has been shown to inhibit biofilm formation by disrupting 
quorum sensing mechanisms (Zhou et al., 2020), while 
caryophyllene alters cell surface hydrophobicity in S. aureus 
(Subramenium et al., 2015), and phytol inhibits both initial 
attachment and mature biofilm development (Pejin et al., 2015). 
The synergistic action of these compounds likely contributes 
to the extract’s efficacy in reducing MRSA biofilm formation.

The presence of flavonoids and phenolic compounds in 
the B. acanthoides extract further enhances its anti-biofilm 
properties through their antioxidant and antimicrobial 
activities. These phytochemicals may disrupt the extracellular 
polymeric substances (EPS) that form the structural scaffold 
of biofilms, thereby weakening their integrity. The extract’s 
ability to inhibit biofilm formation at such a high percentage 
suggests its potential as a promising candidate for developing 
novel anti-biofilm agents against MRSA infections.

Antibacterial Activity

The agar well diffusion assay revealed broad-spectrum 
antibacterial activity of the B. acanthoides extract against 
both Gram-positive and Gram-negative bacteria (Table  2 
and Figure 2). The extract exhibited a clear dose-dependent 
response, with the highest activity observed at 100  mg/mL 
concentration. E. coli showed the highest susceptibility, 

with 87.9% inhibition at 100  mg/mL, followed by S. aureus 
(76.7%), E. faecalis (73.1%), and V. cholerae (67.4%). Notably, 
at 100 mg/mL, the extract’s efficacy against E. coli (9.5 mm 
zone of inhibition) nearly matched that of the positive control 
streptomycin (10.8 mm zone of inhibition).

The broad-spectrum activity of the extract, particularly its 
efficacy against both Gram-positive (S. aureus, E. faecalis) 
and Gram-negative (E. coli, V. cholerae) bacteria, suggests 
the presence of multiple bioactive compounds with diverse 
mechanisms of action. This broad activity spectrum is 
particularly valuable in the context of polymicrobial infections 
and could potentially address the challenge of antibiotic 
resistance in various pathogenic bacteria. The mechanism 
of action for this compound involved bacterial membrane 
depolarization, cell membrane damage, and DNA intercalation, 
leading to impeded DNA replication and disturbed DNA gyrase 
function (Wang et al., 2024).

Table 1: GCMS profile of ethanol extract of B. acanthoides
R.Time Compound name Area % Mol Formula Mol weight

4.111 o‑Xylene 0.46 C8H10 106.16
6.949 Bicyclo[3.1.1]heptane, 6,6‑dimethyl‑2‑methylene‑, (1S)‑ 0.46 C10H16 136.23
13.262 Safrole 0.45 C10H10O2 162.18
13.940 Cyclohexane, 1‑ethenyl‑1‑methyl‑2‑(1‑methylethenyl)‑4‑(1‑methylethylidene)‑ 0.69 C15H24 204.35
14.795 1H‑Cyclopenta[1,3]cyclopropane[1,2]benzene, octahydro‑7‑methyl‑3‑methylene 7.19 C15H24 204.35
15.305 Caryophyllene 9.65 C15H24 204.35
15.812 Humulene 1.49 C15H24 204.35
16.164 Germacrene D 4.97 C15H24 204.35
16.635 (3R,3aR,3bR,4S,7R,7aR)‑4‑Isopropyl‑3,7‑dimethyloctahydro‑1H‑cyclopenta 1.57 C15H26O 222.36
16.922 Benzene, 1,2,3‑trimethoxy‑5‑(2‑propenyl)‑ 0.59 C12H16O3 208.25
17.764 Beta ‑Asarone 34.09 C12H16O3 208.25
18.288 Apiol 4.88 C12H14O4 222.24
19.063 1,7‑Octadiyne 6.59 C8H10 106.16
20.435 Neophytadiene 15.09 C20H38 278.5
21.987 1‑(Cyclopropylmethyl)‑4‑(methyloxy) benzene 1.33 C11H14O 162.23
22.426 Octadecanal 0.36 C18H36O 268.5
23.070 1‑Octadecanol, methyl ether 0.62 C19H40O 284.5
23.329 Phytol 8.79 C20H40O 296.5

Figure 2: Antibacterial Activity of Ethanolic extract of B. acanthoides. 
a) E. coli, b) E. faecalis, c) S. aureus and d) V. cholerae (10, 50, 
100 - Extract concentration (mg/mL); P - Positive control; N - Negative 
Control)

ba

c d
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Table  2: Antibacterial Activity of Ethanolic extract of  
B. acanthoides
Pathogens Samples ZoI % Inhibition F

Staphylococcus aureus 10 2.66±0.57 a 23.1 66.619048
50 4.5±1.32 a 39.1

100 8.83±0.76 b 76.7
P 11.5±0.5 c ‑
N 0 ‑

Escherichia coli 10 1.5±0.5 a 13.8 67.702703
50 6±1 b 55.5

100 9.5±1.32 c 87.9
P 10.8±0.28 c ‑
N 0 ‑

Enterococcus faecalis 10 2±0.5 a 14.4 123.956
50 6.33±0.76 b 45.8

100 10.1±0.76 c 73.1
P 13.8±1.04 d ‑
N 0 ‑

Vibrio cholerae 10 1.16±0.28 a 8.85 181.818
50 4.16±0.76 b 31.7

100 8.83±0.28 c 67.4
P 13.1±1.04 d ‑
N 0 ‑

dF – 3,1; p<0.001.

Molecular Docking Analysis

In silico molecular docking studies provided insights into the 
potential molecular mechanisms underlying the observed 
antibacterial and anti-biofilm activities of the B. acanthoides 
extract. The compound 3R_3AR_12304215 (tentatively identified 
from the GC-MS analysis) showed strong binding affinities to key 
bacterial proteins: SarA from S. aureus (-6.7 kcal/mol) and LasR 
from P. aeruginosa (-6.8 kcal/mol) (Figures 3 and 4).

SarA plays a vital role in regulating biofilm formation in S. aureus 
(Trotonda et al., 2005). It stimulates the ica operon, which is 
responsible for the production of polysaccharide intercellular 
adhesin (PIA/PNAG), an essential component of biofilms (Valle 
et al., 2003; Trotonda et al., 2005). Additionally, SarA controls 
the expression of other genes associated with biofilm formation, 
such as bap (Trotonda et al., 2005). In contrast, LasR serves as a 
critical transcriptional regulator in the quorum sensing system 
of P. aeruginosa (Bottomley et al., 2007). When LasR interacts 
with the autoinducer 3-oxo-dodecanoyl homoserine lactone 
(3O-C12-HSL) produced by LasI, it triggers the transcription 

Figure 3: Binding affinity of Ligands with Specific proteins

Figure 4: Molecular Docking -Protein Ligand Interaction. a) LasR - 4NG2, b) SarA - 2FNP and c) Tyrosyl-tRNA synthetase - 1JIJ

a b c
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of genes encoding virulence-related traits, including elastase, 
lasI, rhlI, and rhlR (Morales et al., 2017). The high binding 
affinity of 3R_3AR_12304215 to these proteins indicates that it 
may disrupt their function, potentially explaining the observed 
anti-biofilm and anti-quorum sensing effects of the extract. 
Caryophyllene, another major component identified in the 
extract, also demonstrated affinity for SarA (-6.5 kcal/mol), 
corroborating its previously reported anti-biofilm properties 
(Neagu et al., 2023). These docking results provide a molecular 
basis for the broad-spectrum antimicrobial and anti-biofilm 
activities observed in the experimental assays.

CONCLUSION

In conclusion, this study demonstrates the significant 
antimicrobial, anti-quorum sensing, and anti-biofilm potential 
of Barleria acanthoides ethanolic extract against clinically 
relevant pathogens, including antibiotic-resistant strains. The 
extract’s complex phytochemical composition suggests a broad 
spectrum of biological activities, which contribute to its efficacy 
in inhibiting bacterial growth and biofilm formation. These 
findings suggest that B. acanthoides may serve as a promising 
source of novel therapeutic agents for managing biofilm-
associated and antibiotic-resistant infections. Further research 
is necessary to explore its full therapeutic potential and identify 
the active compounds responsible for these effects.
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