Effect of Temperature induction response on Cell viability, Cell Survivability, Malondialdehyde content and total soluble protein content of cotton (Gossypium hirsutum L.) genotypes

Authors

  • D. Suneel Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • S. Vincent Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • V. Babu Rajendra Prasad Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • R. Anandham Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • M. Raveendran Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • S. Rajeeswari Department of Cotton (CPBG), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

DOI:

https://doi.org/10.25081/jp.2022.v14.7745

Keywords:

Cotton, temperature induction response, cell viability

Abstract

“Temperature Induction Response” (TIR) technique was employed to investigate the effect of temperature on popular 20 cotton (Gossypium hirsutum L.) genotypes in a laboratory experiment conducted at the Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore during 2020-2021. Identical sized ten days old cotton seedlings were selected and subjected to inductive temperature (gradual temperature raised from 28 to 40℃) for 4 h and non-inductive temperature (46℃ for 3 h, 47℃ for 3 h, 48℃ for 3 h and 48℃ for 4 h) for specific time duration. KC3 and SVPR6 recorded highest thermotolerance among the genotypes and TSH325 and TSH357 showed moderate thermotolerance while TSH375 and TSH383 were sensitive, in terms of seedling survival, cell viability, total soluble protein and malondialdehyde compared to remaining genotypes under non-inductive temperature.

Downloads

Download data is not yet available.

References

Amirjani, M. (2012). Estimation of wheat responses to “high” heat stress. American-Eurasian Journal of Sustainable Agriculture, 6(4), 222-233.

Ashraf, M., Saeed, M. M., & Qureshi, M. J. (1994). Tolerance to High Temperature in Cotton (Gossypium hirsutum L.) at initial growth stages. Journal of Experimental Botany, 34(3), 275-283. https://doi.org/10.1016/0098-8472(94)90048-5

Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491-543. https://doi.org/10.1146/annurev.pp.31.060180.002423

Burke, J. J., Mahony, O., & Oliver, M. J. (2000). Isolation of Arabidopsis mutants lacking components of acquired thermotolerance. Plant Physiology, 123(2), 575–587. https://doi.org/10.1104/pp.123.2.575

Burke, J. J. (1994). Integration of acquired thermotolerance within the developmental program of seed reserve mobilization. In J. H. Cherry (Eds.), Biochemical and Cellular mechanisms of Stress tolerance in Plants. NATO ASI Series, (Vol. 86, pp.191-200), Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-79133-8_9

Chen, Q., Cheng, J. T., Tasi, L. H., Schneider, N., Buchanan, G., Carroll, A., Crist, W., Ozanne, B., Siciliano, M. J., & Baer, R. (1990). The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix‐loop‐helix protein. The European Molecular Biology Organization, 9(2), 415-424. https://doi.org/10.1002/j.1460-2075.1990.tb08126.x

Dar, Z. Z., Sheshsayee, M. S., Lone, A. A., Dharmappa, P. M., Khan, J. A., Biradar, J., Srikanth, Ahmad, A. B., & Gopal, J. H. (2016). Thermal induction response (TIR) in temperate maize Inbred lines. Ecology, Environment and Conservation, 22(4), 387-393.

Flahaut, S., Benachour, A., Giard, J. C., Boutibonnes, P., & Auffray, Y. (1996). Defence against lethal treatments and de novo protein synthesis induced by NaCl in Enterococcus faecalis ATCC 19433. Archives of Microbiology, 165(5), 317-324. https://doi.org/10.1007/s002030050333

Gaff, D., & Okong'O-Ogola, O. (1971). The use of non-permeating pigments for testing the survival of cells. Journal of Experimental Botany, 22(3), 756-758. https://doi.org/10.1093/jxb/22.3.756

Grover, A., Agarwal, M., katiyar-Agarwal, S., Sahi, C., & Agarwal, S. (2000). Production of high temperature tolerant transgenic plants through manipulation of membrane lipids. Current Science, 79(5), 557–559.

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1

Hong, S. W., & Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proceedings of the National Academy of Sciences, 97(8), 4392-4397. https://doi.org/10.1073/pnas.97.8.4392

Howarth, C. J., Pollock, C. J., & Peacock, J. M. (1997). Development of laboratory-based methods for assessing seedling thermotolerance in pearl millet. New Phytologist, 137(1), 129–139. https://doi.org/10.1046/j.1469-8137.1997.00827.x

Keeler, S. J., Boettger, C. M., Haynes, J. G., Kuches, K. A., Johnson, M. M., & Thureen, D. L. (2000). Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiology, 123(3), 1121–1132. https://doi.org/10.1104/pp.123.3.1121

Kheir, E. A., Sheshshayee, M. S., Prasad T. G., & Udayakumar, M. (2012). Temperature induction response as a screening technique for selecting high temperature” – tolerant cotton lines. The Journal of Cotton Science, 16, 190-199.

Kumar, G., Krishnaprasad, B. T., Savitha, B. M., Gopalakrishna, R., Mukhopadhyay, K., Ramamohan, G., & Udayakumar, M. (1999). Enhanced expression of heat-shock proteins in thermo-tolerant lines of sunflower and their progenies selected on the basis of temperature-induction response. Theoretical and Applied Genetics, 99(1), 359–367. https://doi.org/10.1007/s001220051245

Lokesh, B., Srikanthbabu, V., Prasad, T. G., Badigannavar, A., & Udayakumar, M. (2004). Membrane thermo stability as a screening tool to identify high temperature stress tolerant groundnut (Arachis hypogaea L.) lines using temperature indication response approach. Journal of Plant Biology, 31, 53–59.

Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiology, 128(2), 682-695. https://doi.org/10.1104/pp.010320

Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138(2), 882-897. https://doi.org/10.1104/pp.105.062257

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1950). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275.

Oosterhuis, D. M. (2002). Day or night high temperature: A major cause of yield variability. Cotton Grower, 46(9), 8-9.

Raghavendra, T., Jayalakshmi, V., & Venkatesh Babu, D. (2017). Temperature Induction Response (TIR) – A novel physiological approach for thermo tolerant genotypes in chickpea (Cicer arietinum L.). Indian Journal of Agricultural Research, 51(3), 252-256. https://doi.org/10.18805/ijare.v51i03.7921

Sanchez, Y., & Lindquist S. L. (1990). HSP104 required for induced thermotolerance. Science, 248(4959), 1112–1115. https://doi.org/10.1126/science.2188365

SenthilKumar, M., Kumar, G., Srikanthbabu, V., & Udayakumar, M. (2006). Assessment of variability in acquired thermotolerance: Potential option to study genotypic response and the relevance of stress genes. Journal of Plant Physiology, 164(2), 111–125. https://doi.org/10.1016/j.jplph.2006.09.009

SenthilKumar, M., Srikanthbabu, V., Mohanraju, B., Kumar, G., Shivaprakash, N., & Udayakumar, N. (2003). Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique: a novel approach by exploiting residual variability. Journal of Experimental Botany, 54(392), 2569–2578. https://doi.org/10.1093/jxb/erg278

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M. M. B., & Miller, H. L. (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change (2007) The Physical Science Basis. USA: Cambridge University Press.

Srikanthbabu, V., Kumar, G., Krishnaprasad, B. T., Gopalakrishna, R., Savitha, M., & Udayakumar, M. (2002). Identification of pea genotypes with enhanced thermotolerance using temperature induction response (TIR) technique. Journal of Plant Physiology, 159(5), 535–545. https://doi.org/10.1078/0176-1617-00650

Uma, S., Prasad, T. G., & Udayakumar, M. (1995). Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in Fingermillet. Annals of Botany, 76(1), 43–49. https://doi.org/10.1006/anbo.1995.1076

Vacca, R. A., de Pinto, M. C., Valenti, D., Passarella, S., Marra, E., & De Gara, L. (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiology, 134(3), 1100-1112. https://doi.org/10.1104/pp.103.035956

Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Biology, 42(1), 579–620. https://doi.org/10.1146/annurev.pp.42.060191.003051

Vierling, R. A., & Nguyen, H. T. (1992). Use of RAPD markers to determine the genetic diversity of diploid wheat genotypes. Theoretical and Applied Genetics, 84(7), 835-838. https://doi.org/10.1007/BF00227393

Vijayalakshmi, D., Srividhya, S., Vivitha, P., & Raveendran, M. (2015). Temperature induction response as a rapid screening protocol to dissect the genetic variability in acquired thermo tolerance in rice and to identify novel donors for high temperature stress tolerance. Indian Journal of Plant Physiology, 20(4), 368-374. https://doi.org/10.1007/s40502-015-0192-1

Visioli, G., Maestri, E., & Marmiroli, N. (1997). Differential display mediated isolate on a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana. Plant Molecular Biology, 34(3), 515–527. https://doi.org/10.1023/a:1005824314022

Woolf, A. B., & Lay-Yee, M. (1997). Pretreatments at 38°C of ‘Hass’ avocado confer thermotolerance to 50°C hot-water treatments. American Society for Horticultural Science, 32(4), 705–708. https://doi.org/10.21273/HORTSCI.32.4.705

Zahid, K. R., Ali, F., Shah, F., Younas, M., Shah, T., & Shahwar, D. (2016). Response and Tolerance Mechanism of Cotton Gossypium hirsutum L. to Elevated Temperature Stress: A Review. Frontiers in Plant Science, 7, 937. https://doi.org/10.3389/fpls.2016.00937

Published

05-08-2022

How to Cite

Suneel, D. ., Vincent, S., Babu Rajendra Prasad, V., Anandham, R., Raveendran, M., & Rajeeswari, S. (2022). Effect of Temperature induction response on Cell viability, Cell Survivability, Malondialdehyde content and total soluble protein content of cotton (Gossypium hirsutum L.) genotypes. Journal of Phytology, 14, 86–94. https://doi.org/10.25081/jp.2022.v14.7745

Issue

Section

Articles