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INTRODUCTION

Cotton (Gossypium hirsutum L.) is the world’s most important 
fibre economic cash crop which is essential for textile industry 
and is also useful for oils and livestock feed. Around 80% 
of world production in cotton comes from seven countries 
where, India is placed in third position (Zahid et al., 2016). 
Plants adapt to heat stress by inherent basal level tolerance 
and also acquired tolerance to severe heat stress. Mainly 
acquired thermo tolerance was quite rapid and it has been 
shown to be induced during cell acclimation, to moderately 
high temperature periods (Larkindale et al., 2005). The ability 
to with stand and to acclimate to supraoptimal temperature 
results from both prevention of heat damage and repair of 
heat-sensitive components. Cotton seedlings when exposed to 
sub lethal temperature much prior to challenge with the severe 

temperatures, have better growth recovery when compared 
to seedlings challenged directly to severe temperature stress. 
Though, cotton is a hardy which crop can come up in all 
types of climatic conditions, global warming is mainly serious 
emerging threat causing environmental fluctuations in most 
of the agricultural zones of world including cotton (Solomon, 
2007). It responds to various abiotic stresses, especially, high 
temperature is one which can cause severe damages to cotton 
crop at cellular level in all growth and developmental stages 
ultimately limit the cotton yield (Oosterhuis, 2002). Present 
study is to explain the screening of cotton seedlings against 
thermo tolerance through the “Temperature Induction 
Response” technique. This method was widely used for rapid 
screening of cotton genotypes for high temperature tolerance 
(Kheir et al., 2012). The current screening study is mainly based 
on the principle of “acquired thermo tolerance” of seedlings of 
20 cotton genotypes of Tamil Nadu. The accounting data of 
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morphological and biochemical characters of cotton seedlings 
were considered for the confirmation of high temperature 
tolerance of selected varieties.

MATERIALS AND METHODS

The laboratory screening studies through the Temperature 
Induction Response (TIR) technique was conducted in the 
Department of Crop Physiology, Tamil Nadu Agricultural 
University, Coimbatore during 2020-2021. Twenty cotton 
genotypes of Tamil Nadu namely, KC3, SVPR6, CO15, CO16, 
CO17, TSH325, TSH357, TSH358, TSH367, TSH375, TSH383, 
TSH387, TSH406, TSH408, TSH419, TCH1828, TCH1897, 
TCH1199, TCH1895 and TCH1941 were collected from the 
Department of Cotton, Tamil Nadu Agricultural University, 
Coimbatore. The uniform size of 10 days old seedlings were 
grown in paper cup (1:1 ratio of coir pith: vermicompost) were 
exposed to a gradual temperature from T1-Control, T2-46℃ 
for 3 h, T3-47℃ for 3 h, T4-48℃ for 3 h and T5-48℃ for 4 h. 
The exposed seedlings were kept for recovery under room 
temperature for 48 hours and analysis were done for seedling 
survival, cell viability (Gaff & Okong’O-Ogola, 1971), total 
soluble protein (Lowry et al., 1950) and lipid peroxidation 
(MDA content) (Heath & Packer, 1968). All the treatments 
were maintained with 3 replications and the data were analysed 
under Factorial Completely Randomized Design (FCRD) by 
using SPSS.

Statistical Analysis

SPSS Statistics version 23.0 software (http://www.spss.com) 
was used for statistical analysis. The mean values of each 
parameter were identified and examined using analysis of 
variance to determine the significance for all the genotypes 
and treatments.

RESULTS

Cell Survivability

Higher cell survivability percentage was recorded in the 
genotype KC3 (64.60%) compared to remaining genotypes 
followed by SVPR6 (63.98%) (Table 1 and Figure 1). A lower 
cell survivability percentage was observed in TSH375 (40.85%) 
compared to remaining genotypes. Among five temperature 
treatments, control (T1) (73.01%) recorded significantly 
higher cell survivability percentage compared to remaining 
treatments. The temperature treatment, 48oC for 4 hrs 
(T5) (21.73%) showed significantly lower cell survivability 
percentage compared to other temperature treatments. In 
the genotype and treatment interaction relationship, the 
genotypes KC3 (90.63%) and SVPR6 (90.07%) grown under 
control (T1) temperature treatment showed significantly 
higher cell survivability percentage compared to all other 
genotype and treatment interactions. It was also observed 
that genotype TSH375 (15.90%) showed significantly lower 
cell survivability percentage grown under 48oC for 4 hrs (T5) 
treatment compared to all other combinations.

Cell Viability

Higher significant cell viability percentage was noticed in 
KC3 (78.51%) and SVPR6 (78.46%) among 20 genotypes 
(Table 2 and Figure 2). The genotypes TSH406 (77.20%) and 
TSH408 (77.15%) recorded higher significant cell viability 
percentage compared to remaining genotypes. The genotypes 
namely TSH375 (63.06%) and TSH383 (63.07%) recorded 
significantly lower cell viability percentage when compared to 
other genotypes. It was observed that, among all the temperature 
treatments control (T1) (90.18%) recorded significantly higher 
cell viability percentage compared to remaining treatments. 
Apart from control, 46oC for 3 hours (T2) (81.75%) significantly 
highest cell viability percentage was recorded compared to other 
three treatments followed by 47oC for 3 hrs (T3) (71.53%), 48oC 
for 3 hrs (T4) (58.94%) and 48oC for 4 hrs (T5) (53.05%). The 
genotype and treatment interaction relationship, observations 
revealed that the genotypes, KC3 (97.00%), SVPR6 (97.17%), 
TSH406 (96.00%) and TSH408 (96.00%) grown under control 
(T1) temperature treatment showed significantly higher 
cell viability percentage compared to all other genotype and 
treatment interactions. The genotypes TSH375 (46.59%) and 
TSH383 (46.66%) grown under 48oC for 4 hrs (T5) temperature 
treatment showed significantly lower cell viability percentage 
compared to all other combinations.

Lipid Peroxidation

The genotypes SVPR6 (0.173 nmol g-1) and KC3 (0.176 nmol g-1) 
produced significantly lower malondialdehyde content compared 
to all other 18 genotypes. The genotype TSH375 (0.445 nmol g-1) 
recorded significantly higher MDA content when compared to 
remaining genotypes (Table 3 and Figure 3). Among five different 
temperature treatments, the temperature treatment control (T1) 
(0.166 nmol g-1) revealed significantly lower malondialdehyde 
content compared to remaining four treatments. The temperature 
treatment 48oC for 4 hrs (T5) (0.399 nmol g-1) registered 
significantly higher malondialdehyde content compared to all other 
temperature treatments. With respect to genotype and temperature 
treatment interaction, the production of malondialdehyde content 
was significantly lower in the genotypes SVPR6 and KC3 compared 
to remaining genotypes which were grown under all the five 
temperature treatments. Genotype TSH375 showed significantly 
higher MDA content compared with other genotypes grown under 
all five temperature treatments.

Total Soluble Protein

The total soluble content was found significantly higher in 
the genotypes KC3 (14.79 mg g-1) and SVPR6 (14.30 mg g-1) 
compared to all other genotypes (Table 4 and Figure 4). The 
genotypes TSH383 (8.93 mg g-1), TSH358 (9.36 mg g-1) and 
TSH375 (9.02 mg g-1) had significantly lower TSP compared 
to remaining genotypes. Among five different temperature 
treatments, 48oC for 3 hrs (T4) (12.92 mg g-1) recorded 
significantly higher TSP compared to remaining treatments 
followed by 48oC for 4 hrs (T4) (12.10 mg g-1). The temperature 
treatment, control (T1) (9.92 mg g-1) significantly recorded 
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lower total soluble protein compared to remaining all other 
temperature treatments. Genotype and temperature treatment 
interaction was significantly higher in the genotypes SVPR6 and 
KC3 compared to remaining genotypes which were grown under 
all five temperature treatments. Genotype TSH383 showed 
significantly lower TSP content compared to all other genotypes 
grown under all five temperature treatments.

DISCUSSION

Generally plants will overcome the stress by adopting 
several altered physiological, morphological and biochemical 
mechanisms including short-term avoidance or acclimation 
mechanisms to survive and produce the economically valuable 
yield. Under normal conditions plants will experience a 

Table 1: Effect of temperature induction response on cell survivability of 10 days old cotton seedlings
GENOTYPES T1‑ CONTROL T2 – 46oC for 3 hrs T3 – 47oC for 3 hrs T4 – 48oC for 3 hrs T5 – 48oC for 4 hrs MEAN

KC3 90.63 81.93 71.32 47.71 31.41 64.60
SVPR6 90.07 81.30 70.53 47.23 30.77 63.98
CO15 72.97 64.50 54.75 35.73 22.02 49.99
CO16 70.03 61.69 51.85 33.31 20.77 47.53
CO17 71.70 63.21 53.22 34.16 21.41 48.74
TSH325 74.90 66.29 56.45 37.18 23.07 51.58
TSH357 81.83 72.82 62.10 40.63 25.55 56.58
TSH358 65.50 56.49 47.50 29.32 17.46 43.25
TSH367 67.30 58.39 48.93 30.19 18.41 44.65
TSH375 62.67 53.51 44.82 27.35 15.90 40.85
TSH383 64.97 55.48 46.35 28.20 16.67 42.33
TSH387 65.77 56.93 47.76 29.57 17.82 43.57
TSH406 85.43 77.05 66.51 44.46 28.71 60.43
TSH408 85.67 77.19 66.63 44.31 28.41 60.44
TSH419 80.97 72.91 62.85 41.54 26.52 56.96
TCH1828 79.17 70.87 60.61 40.36 25.54 55.31
TCH1897 68.63 59.66 50.21 32.02 19.33 45.97
TCH1199 69.53 60.82 50.88 32.10 19.51 46.57
TCH1895 78.50 70.10 59.71 39.75 24.85 54.58
TCH1941 68.70 60.27 50.27 31.02 19.26 45.91
MEAN 73.01 64.34 54.52 35.07 21.73 GM=51.19

TREATMENT GENOTYPE  (GXT) INTERACTION

CD 0.259 0.517 1.157
SE (m) 0.093 0.185 0.415
SE (d) 0.131 0.262 0.586

Table 2: Effect of temperature induction response on cell viability of 10 days old cotton seedlings
GENOTYPES T1‑ CONTROL T2 – 46oC for 3 hrs T3 – 47oC for 3 hrs T4 – 48oC for 3 hrs T5 – 48oC for 4 hrs MEAN

KC3 97.00 91.08 79.69 65.67 59.10 78.51
SVPR6 97.16 90.94 79.58 65.57 59.01 78.45
CO15 92.00 83.77 73.30 60.40 54.36 72.76
CO16 92.00 83.40 72.98 60.13 54.12 72.53
CO17 91.00 82.39 72.09 59.40 53.46 71.67
TSH325 93.00 84.93 74.32 61.24 55.11 73.72
TSH357 95.00 86.65 75.82 62.48 56.23 75.24
TSH358 86.00 76.36 66.82 55.06 49.55 66.76
TSH367 85.00 75.93 66.43 54.74 49.27 66.27
TSH375 82.33 71.79 62.82 51.76 46.58 63.06
TSH383 82.00 71.91 62.92 51.85 46.66 63.07
TSH387 85.00 75.66 66.20 54.55 49.10 66.10
TSH406 96.00 89.37 78.20 64.44 57.99 77.20
TSH408 96.00 89.29 78.13 64.38 57.94 77.15
TSH419 94.00 87.13 76.24 62.82 56.54 75.35
TCH1828 95.00 87.50 76.56 63.09 56.78 75.78
TCH1897 90.00 81.43 71.25 58.71 52.84 70.84
TCH1199 88.00 79.49 69.55 57.31 51.58 69.18
TCH1895 94.00 86.01 75.25 62.01 55.81 74.61
TCH1941 87.00 78.40 68.60 56.53 50.87 68.28
MEAN 90.18 81.75 71.53 58.94 53.04 GM=71.83

TREATMENT GENOTYPE (GXT) INTERACTION

CD 0.464 0.928 2.072
SE (m) 0.166 0.333 0.744
SE (d) 0.235 0.47 1.052
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gradual increase in stress over a period of time which gradually 
progression results in the exposure of plants to mild stress before 
plants undergo severe stress. When plants were exposed to 
induction stress, acquired tolerance is induced, which is referred 
to as increased tolerance by plants to lethal stress. Acquired 
tolerance is like ubiquitous and it is been demonstrated in 
several species like Arabidopsis mutants (Burke et al., 2000; 

Flahaut et al., 1996; Hong & Vierling, 2000; Larkindale et al., 
2005; SenthilKumar et al., 2006; Vierling, 1991). Plants upon 
exposure to acclimation of temperature stress, many heat shock 
proteins, other stress response genes and some transcription 
factors are up-regulated (Kumar et al., 1999; SenthilKumar 
et al., 2003; Srikanthbabu et al., 2002; Uma et al., 1995; Visioli 
et al., 1997; Woolf & Lay- Yee, 1997).

Table 3: Effect of temperature induction response on lipid peroxidation content of 10 days old cotton seedlings
GENOTYPES T1‑ CONTROL T2 – 46oC for 3 hrs T3 – 47oC for 3 hrs T4 – 48oC for 3 hrs T5 – 48oC for 4 hrs MEAN

KC3 0.112 0.146 0.179 0.213 0.230 0.176
SVPR6 0.109 0.144 0.178 0.210 0.226 0.173
CO15 0.159 0.222 0.281 0.327 0.372 0.272
CO16 0.166 0.234 0.295 0.343 0.392 0.286
CO17 0.175 0.249 0.312 0.364 0.417 0.303
TSH325 0.149 0.206 0.259 0.301 0.340 0.251
TSH357 0.153 0.212 0.268 0.312 0.352 0.260
TSH358 0.215 0.329 0.413 0.469 0.572 0.399
TSH367 0.202 0.299 0.380 0.430 0.515 0.365
TSH375 0.234 0.367 0.466 0.522 0.636 0.445
TSH383 0.227 0.352 0.443 0.501 0.615 0.428
TSH387 0.209 0.313 0.395 0.450 0.548 0.383
TSH406 0.117 0.158 0.193 0.228 0.246 0.188
TSH408 0.119 0.161 0.198 0.234 0.256 0.194
TSH419 0.127 0.173 0.214 0.251 0.280 0.209
TCH1828 0.136 0.186 0.232 0.271 0.302 0.225
TCH1897 0.183 0.263 0.329 0.383 0.443 0.320
TCH1199 0.186 0.271 0.341 0.391 0.456 0.329
TCH1895 0.141 0.194 0.243 0.282 0.317 0.235
TCH1941 0.191 0.280 0.353 0.403 0.474 0.340
MEAN 0.166 0.238 0.299 0.344 0.399 GM=0.289

TREATMENT GENOTYPE (GXT) INTERACTION

CD 0.002 0.004 0.009
SE (m) 0.001 0.001 0.003
SE (d) 0.001 0.002 0.005

Table 4: Effect of temperature induction response on total soluble protein content of 10 days old cotton seedlings
GENOTYPES T1‑ CONTROL T2 – 46oC for 3 hrs T3 – 47oC for 3 hrs T4 – 48oC for 3 hrs T5–48oC for 4 hrs MEAN

KC3 12.45 13.74 15.26 16.79 15.72 14.79
SVPR6 12.08 13.30 14.73 16.21 15.18 14.30
CO15 10.04 10.88 11.88 13.07 12.24 11.62
CO16 9.89 10.69 11.71 12.88 12.06 11.45
CO17 10.00 10.80 11.83 13.01 12.18 11.56
TSH325 10.49 11.40 12.51 13.76 12.89 12.21
TSH357 10.32 11.22 12.28 13.50 12.64 11.99
TSH358 8.24 8.73 9.52 10.48 9.81 9.36
TSH367 9.00 9.57 10.47 11.52 10.79 10.27
TSH375 8.00 8.43 9.16 10.07 9.43 9.02
TSH383 7.91 8.29 9.09 10.00 9.36 8.93
TSH387 8.60 9.17 10.03 11.03 10.33 9.84
TSH406 11.94 13.13 14.58 16.04 15.02 14.14
TSH408 11.65 12.76 14.10 15.51 14.52 13.71
TSH419 11.62 12.71 14.02 15.43 14.44 13.64
TCH1828 11.32 12.36 13.61 14.98 14.02 13.26
TCH1897 9.53 10.27 11.24 12.37 11.58 11.00
TCH1199 9.48 10.19 11.15 12.26 11.48 10.91
TCH1895 11.01 12.00 13.18 14.50 13.57 12.85
TCH1941 9.43 10.10 11.05 12.16 11.38 10.82
MEAN 9.91 10.71 11.75 12.92 12.10 GM=11.78

TREATMENT GENOTYPE (GXT) INTERACTION

CD 0.321 0.642 1.435
SE (m) 0.115 0.230 0.514
SE (d) 0.163 0.325 0.727
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The threshold temperature for tolerance capacity will differ 
among the different species. In sunflower 49oC for 2 hrs is a 
severe temperature stress (SenthilKumar et al., 2006), whereas 
it is 52oC in groundnut (Lokesh et al., 2004) and in peas also 
(Srikanthbabu et al., 2002). Similarly the induction stress 
required for optimum expression of stress response genes also 
varies among the different species.

Some of the researchers observed that high recovery growth 
of induced seedlings is only because of altered metabolism 
in response to acclimation seen in some crops like sunflower 
(Kumar et al., 1999; Senthil Kumar et al., 2006), sorghum, pearl 

millet (Howarth et al., 1997), beans (Keeler et al., 2000), wheat 
(Burke, 1994), and groundnut (Srikanthbabu et al., 2002). 
Several stress-adaptive mechanisms are enhanced signifying 
that coordinated expressions of several temperature stress-
responsive genes that occur upon the induction. Physiological 
and biochemical processes as mentioned by Chen et al., 
(1990) including maintenance of membrane stability (Berry 
& Bojorkman, 1980; Grover et al., 2000) and sustaining 
the macromolecules without getting destroyed (Sanchez & 
Lindquist, 1990; Vierling & Nguyen, 1992) were showed to 
occur in response to induction stress treatment.

Figure 1: Graphical representation of cell survivability percentage

Figure 3: Graphical representation of MDA content

Figure 2: Graphical representation of cell viability percentage
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Therefore, by keeping all these points into consideration a study 
about temperature response across the genotypes of different 
species, optimum induction and challenging temperatures were 
to be standardized. In the present investigation development of 
a Temperature induction response protocol for cotton genotypes 
was accomplished. In this protocol, seedlings were initially 
exposed inductive temperature (gradual temperature raised 
from 28 to 40℃) for 4 h and non-inductive temperature (46℃ 
for 3 h, 47℃ for 3 h, 48℃ for 3 h and 48℃ for 4 h) for specific 
time duration. Further, the recovery growth period at the end 
of 48 hrs 30ºC temperature was assessed.

In the present investigation despite the exposure of different 
cotton genotypes to optimum induction temperature, lethal 
temperature and the recovery growth differed among the 
different genotypes. Variation in the stress adaptive mechanisms 
in between the genotypes might be the reason for observed 
differences for thermo tolerance. Previously it was reported that 
induction stress mainly alters the gene expression and brings 
greater adaptation to temperature stress and genetic variability 
in thermo tolerance is seen upon induction stress.

When the temperature is increasing the membrane damage will 
be more and it will disrupt the leaf membranes, then the proteins 
will shuffle in order to change the positions and thereby will be 
a less chance for its survival when it get damaged. Percentage of 
seedlings survivability was declined when the plants are subjected 
to continuous stress period. Similarly, this trend was shown in some 
crops like cotton (Kheir et al., 2012), rice (Vijayalakshmi et al., 2015), 
maize (Dar et al., 2016) and chickpea (Raghavendra et al., 2017).

It showed that the cell viability and high temperature was 
indirectly correlated with each other. With increase in gradual 
temperature it showed decreasing the viable cell counts. 
Similarly, Kheir et al. (2012) reported that the cell viability 
percentage of cotton estimated by Evan’s blue method which 
mainly had higher viable cell count (87.01%) in heat tolerant 
genotype as that of heat susceptible (34.41%).

High temperature stress that mainly impairs the mitochondrial 
functions thereby resulting in the induction of oxidative damage 
which leads mainly that manifests in lipid peroxidation, detected 
by malondialdehyde content (Larkindale & Knight 2002; Vacca 

et al., 2004). Heat stress also causes increased membrane damage 
due to lipid peroxidation (Amirjani, 2012). Malondialdehyde 
content will be more in the susceptible genotypes when 
compared to the tolerant genotypes because the damage which 
will be more in case of susceptible genotypes as they undergo 
more lipid peroxidation whereas tolerant genotypes will be able to 
overcome the effect by decreasing the effect of ROS production. 
Similarly, Vijayalakshmi et al. (2015) observed that lipid 
peroxidation (MDA content) was lower in inductive temperature 
when compared to non-inductive temperature in rice.

Increase in total soluble protein content with the occurrence 
of high temperature might be a reason for restructuring and 
accumulation of protein fractions. Similarly Ashraf et al. (1994) 
reported in sorghum and barley where the majority of heat shock 
proteins were associated with the soluble fractions only.

CONCLUSION

This study mainly concludes that, the screening of 10 days old 
cotton seedling through the temperature induction response 
(TIR) expressed that the seedling survival, cell viability, TSP 
and MDA content was higher in KC3, SVPR6 and moderate 
in TSH325, TSH357 and least in TSH375, TSH383. Further 
it was inferred that KC3, SVPR6 varieties had shown high 
thermo tolerance capacity when compared to all other genotypes 
when they are subjected to high thermo tolerance. Finally due 
to induction of high temperature by TIR protocol the plants 
which are subjected to severe stress condition will be affected 
by damage caused to the thylakoid membrane which leads to 
damage of ATP synthesis due to loss in proton motive force, so 
the cell may loss its function even though some of the enzymes 
which will work on optimum temperature also. Some of the 
tolerant genotypes which showed positive values maintain 
their resistant mechanism by decreasing the ROS production 
by increasing the antioxidant enzymes capacity.
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SUPPLEMENTARY MATERIALS

Figure S2: Heat map analysis. Heat map for following 20 genotypes which are distributed based on their values for each representing colours 
for each parameter and they are representing as >50 dark green, < 50 light green, decimals in red and above 10 orange colour. 

Figure S3: a) 10 days Cotton seedlings in cups, b and c) Induction of stress in TIR, d) Lab analysis for all treatments.
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dc

Figure S1: Regression for genotypes. All the genotypes and treatments are correlated with each other and regression graphs are represented above.
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Table S1: Correlation of genotypes
Cell 

survivability
Cell 

viability
Lipid 

peroxidation
Total soluble 

protein

Cell survivability 1.000
Cell viability 0.947 1.000
Lipid peroxidation ‑0.952 ‑0.989 1.000
Total soluble protein 0.968 0.969 ‑0.987 1.000

Table S2: Correlation of treatments
Cell 

survivability
Cell 

viability
Lipid 

peroxidation
Total soluble 

protein

Cell survivability 1.000    
Cell viability 0.989 1.000   
Lipid peroxidation ‑0.973 ‑0.989 1.000  
Total soluble protein ‑0.853 ‑0.915 0.891 1.000


