Effect of heavy metals on phenylpropanoid biosynthesis in Euonymus alatus

Authors

  • Ramaraj Sathasivam Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
  • Haeng-Hoon Kim Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea
  • Bao Van Nguyen Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
  • Jiwon Yoon Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
  • Byung Bae Park Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
  • Jae Kwang Kim Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
  • Sang Un Park Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea, Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

DOI:

https://doi.org/10.25081/jaa.2023.v9.8699

Keywords:

Euonymus alatus, Heavy metals, Phenolic compounds, CuCl2, HgCl2, NiSO4

Abstract

The productivity of the phenylpropanoid biosynthesis pathway in plants varies depending on the type of stress. In this work, we looked into how different phenylpropanoid chemicals accumulated in Euonymus alatus following exposure to different concentrations of CuCl2 (0.1, 0.5, and 1 mM), HgCl2 (0.1, 0.5, and 1 mM), and NiSO4 (10, 50, and 100 mM). We analyzed some of the individual phenolic chemicals by high-performance liquid chromatography (HPLC). In nearly all cases, rutin showed the largest concentration among the phenylpropanoid chemicals, followed by epicatechin, sinapic acid, p-coumaric acid, trans-cinnamic acid, ferulic acid, and caffeic acid. However, due to the change in the concentration of the heavy metals, the amount of phenylpropanoid changed. The highest accumulation of phenylpropanoid was documented in 0.1 mM CuCl2, whereas it was reduced in 1 mM HgCl2 exposed plants. These findings unequivocally demonstrate that the phenylpropanoid metabolic pathway took part in the heavy metal tolerance process, which shielded E. alatus from the oxidative damage brought on by heavy metals. Thus, under a variety of environmental stress situations, this species with a high tolerance to heavy metals may survive.

Downloads

Download data is not yet available.

References

Biala, W., & Jasinski, M. (2018). The phenylpropanoid case - It is transport that matters. Frontiers in Plant Science, 9, 1610. https://doi.org/10.3389/fpls.2018.01610

Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2010). Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chemistry, 119(4), 1485-1490. https://doi.org/10.1016/j.foodchem.2009.09.030

Chung, I. M., Kim, J. J., Lim, J. D., Yu, C. Y., Kim, S. H., & Hahn, S. J. (2006). Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environmental and Experimental Botany, 56(1), 44-53. https://doi.org/10.1016/j.envexpbot.2005.01.001

Clemens, S., & Weber, M. (2016). The essential role of coumarin secretion for Fe acquisition from alkaline soil. Plant Signaling & Behavior, 11(2), e1114197. https://doi.org/10.1080/15592324.2015.1114197

Demirezen, D., & Aksoy, A. (2006). Heavy metal levels in vegetables in Turkey are within safe limits for Cu, Zn, Ni and exceeded for Cd and Pb. Journal of Food Quality, 29(3), 252-265. https://doi.org/10.1111/j.1745-4557.2006.00072.x

Enogieru, A. B., Haylett, W., Hiss, D. C., Bardien, S., & Ekpo, O. E. (2018). Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxidative Medicine and Cell Longevity, 2018, 6241017. https://doi.org/10.1155/2018/6241017

Fan, L., Zhang, C., Ai, L., Wang, L., Li, L., Fan, W., Li, R., He, L., Wu, C., & Huang, Y. (2020). Traditional uses, botany, phytochemistry, pharmacology, separation and analysis technologies of Euonymus alatus (Thunb.) Siebold: a comprehensive review. Journal of Ethnopharmacology, 259, 112942. https://doi.org/10.1016/j.jep.2020.112942

Grzesik, M., Naparlo, K., Bartosz, G., & Sadowska-Bartosz, I. (2018). Antioxidant properties of catechins: Comparison with other antioxidants. Food Chemistry, 241, 480-492. https://doi.org/10.1016/j.foodchem.2017.08.117

He, S.-Y., Qiu, X.-M., Wang, Y.-Q., Su, Z.-Q., Zhang, B.-Y., Wen, Z., Yang, Y.-F., Xing, B.-F., Hong, M., & Liao, R. (2022). Intervention effect of Potentilla discolor-Euonymus alatus on intestinal flora of type 2 diabetes mellitus rats. European Review for Medical and Pharmacological Science, 26(24), 9062-9071. https://doi.org/10.26355/eurrev_202212_30655

Kim, N. S., Sathasivam, R., Chun, S. W., Youn, W. B., Park, S. U., & Park, B. B. (2020). Biosynthesis of phenylpropanoids and their protective effect against heavy metals in nitrogen-fixing black locust (Robinia pseudoacacia). Tropical Journal of Pharmaceutical Research, 19(5), 1065-1072. https://doi.org/10.4314/tjpr.v19i5.23

Kisa, D., Elmastas, M., Ozturk, L., & Kayir, O. (2016). Responses of the phenolic compounds of Zea mays under heavy metal stress. Applied Biological Chemistry, 59, 813-820. https://doi.org/10.1007/s13765-016-0229-9

Kivaisi, A. K. (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecological Engineering, 16(4), 545-560. https://doi.org/10.1016/S0925-8574(00)00113-0

Korkina, L., Kostyuk, V., De Luca, C. & Pastore, S. (2011). Plant phenylpropanoids as emerging anti-inflammatory agents. Mini-Reviews in Medicinal Chemistry, 11(10), 823-835. https://doi.org/10.2174/138955711796575489

Lombardi, L., & Sebastiani, L. (2005). Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Science, 168(3), 797-802. https://doi.org/10.1016/j.plantsci.2004.10.012

Madera-Parra, C. A., Pena-Salamanca, E. J., Pena, M. R., Rousseau, D. P. L., & Lens, P. N. L. (2015). Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands. International Journal of Phytoremediation, 17(1), 16-24. https://doi.org/10.1080/15226514.2013.828014

Mehra, P., Garg, M., Koul, A., & Bansal, D. D. (2013). Effect of (+)-catechin hydrate on oxidative stress induced by high sucrose and high fat diet in male Wistar rats. Indian Journal of Experimental Biology, 51(10), 823-827.

Ning, K., Zhou, T., Wang, Y., El-Kassaby, Y. A., & Ma, Y. (2022). The complete chloroplast genome of Euonymus alatus (Celastraceae). Mitochondrial DNA Part B Resources, 7(4), 707-708. https://doi.org/10.1080/23802359.2022.2067494

Panda, P., Appalashetti, M., & Judeh, Z. M. A. (2011). Phenylpropanoid sucrose esters: Plant-derived natural products as potential leads for new therapeutics. Current Medicinal Chemistry, 18(21), 3234-3251. https://doi.org/10.2174/092986711796391589

Qin, X. Y., Yan, S. X., & Wei, F. Y. (2011). Geographical distribution of plants of Celastraceae in China. Journal of Northeast Forestry University, 39(1), 120-123.

Shen, Y. B., Song, X., Li, L., Sun, J., Jaiswal, Y., Huang, J. Q., Liu, C., Yang, W. J., Williams, L., Zhang, H., & Guan, Y. (2019). Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomedicine and Pharmacotherapy, 111, 579-587. https://doi.org/10.1016/j.biopha.2018.12.074

Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. https://doi.org/10.3390/molecules24061123

Yang, C. S., Landau, J. M., Huang, M.-T., & Newmark, H. L. (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. Annual Review of Nutrition, 21, 381-406. https://doi.org/10.1146/annurev.nutr.21.1.381

Yao, L. H., Jiang, Y. M., Shi, J., Tomas-Barberan, F. A., Datta, N., Singanusong, R., & Chen, S. S. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 59, 113-122. https://doi.org/10.1007/s11130-004-0049-7

Zhai, X., Lenon, G. B., Xue, C. C. L., & Li, C.-G. (2016). Euonymus alatus: A review on its phytochemistry and antidiabetic activity. Evidence Based Complementary and Alternative Medicine, 2016, 9425714. https://doi.org/10.1155/2016/9425714

Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283-333. https://doi.org/10.1016/j.biotechadv.2005.01.003

Published

08-12-2023

How to Cite

Sathasivam, R., Kim, H.-H., Nguyen, B. V., Yoon, J., Park, B. B., Kim, J. K., & Park, S. U. (2023). Effect of heavy metals on phenylpropanoid biosynthesis in Euonymus alatus. Journal of Aridland Agriculture, 9, 132–137. https://doi.org/10.25081/jaa.2023.v9.8699

Issue

Section

Articles