Effects of light-emitting diodes on the morphology and accumulation of glucosinolates, carotenoids and phenolic acids in red kale sprouts

Authors

  • Leonel Tarcisio da Cristina Bungala Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea, Mozambique Agricultural Research Institute, Central Regional Center, Highway Nº 6, P.O. Box 42, Chimoio, Mozambique
  • Ramaraj Sathasivam Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
  • Jong Seok Park Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
  • Jae Kwang Kim Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
  • Sang Un Park Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea, Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea, Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

DOI:

https://doi.org/10.25081/jaa.2024.v10.8895

Keywords:

Kale sprouts, LED irradiation, Phytochemical composition, Secondary metabolites, HPLC

Abstract

Kale (Brassica oleracea var. acephala) has gained popularity as a nutritious and phytochemical-rich vegetable. This study has investigated the effects of three LED treatments (white, blue, and red) on the accumulation of secondary metabolites in kale sprouts. Ten DAS, the kale sprouts were harvested, and growth measurements were measured. Furthermore, selected sprouts were stored at -80 °C for further biochemical analysis, namely, phenolic acids, glucosinolates, and carotenoids. Sprouts irradiated with red LED light showed the best SL, RT, and FW values. For total GSLs, we found that kale sprouts irradiated with white LED lights showed the best results (41.59±0.41 μmol/g DW). Among the aliphatic GSLs, we found that progoitrin presented the best results under blue LED light (17.93±0.49 µmol/g DW), and among the indolic GSLs, glucobrassicin showed the best results under white and red LED light. The highest concentration of total carotenoids was found in kale sprouts under white LED light exposure (3341.27±206.96 μg/g DW). Individually, β-carotene was observed in high concentration under white LED light (1935.13±87.21 μg/g DW). Among the PAs, chlorogenic acid was found in the highest concentration in the treatments under white LED light (45.78±0.73 µg/g DW). In general, kale sprouts irradiated with white LED light showed high contents of GSLs, carotenoids, and PAs. Regarding morphological characteristics, kale sprouts under red LED light showed the most promise. This research offers a valuable approach to enhancing the phytochemicals found in kale sprouting.

Downloads

Download data is not yet available.

References

Abdel-Massih, R. M., Debs, E., Othman, L., Attieh, J., & Cabrerizo, F. M. (2023). Glucosinolates, a natural chemical arsenal: More to tell than the myrosinase story. Frontiers in Microbiology, 14, 1130208. https://doi.org/10.3389/fmicb.2023.1130208

Adeyeye, A., Ayodele, O. D., Akinnuoye, G. A., & Sulaiman, W. (2018). Proximate composition and fatty acid profiles of two edible leafy vegetables in Nigeria. American Journal of Food, Nutrition and Health, 3(2), 51-55.

Adil, M., Ren, X., & Jeong, B. R. (2019). Light elicited growth, antioxidant enzymes activities and production of medicinal compounds in callus culture of Cnidium officinale Makino. Journal of Photochemistry and Photobiology B: Biology, 196, 111509. https://doi.org/10.1016/j.jphotobiol.2019.05.006

Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P. P., Barros, L., & Ferreira, I. C. F. R. (2021). Phenolic compounds: current industrial applications, limitations and future challenges. Food and Function, 12(1), 14-29. https://doi.org/10.1039/d0fo02324h

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. https://doi.org/10.3390/plants6040042

Ayaz, F. A., Hayırlıoglu-Ayaz, S., Alpay-Karaoglu, S., Gruz, J., Valentova, K., Ulrichova, J., & Strnad, M. (2008). Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chemistry, 107(1), 19-25. https://doi.org/10.1016/j.foodchem.2007.07.003

Barba, F. J., Nikmaram, N., Roohinejad, S., Khelfa, A., Zhu, Z., & Koubaa, M. (2016). Bioavailability of glucosinolates and their breakdown products: Impact of processing. Frontiers in Nutrition, 3, 24. https://doi.org/10.3389/fnut.2016.00024

Becerra-Moreno, A., Alanís-Garza, P. A., Mora-Nieves, J. L., Mora-Mora, J. P., & Jacobo-Velázquez, D. A. (2014). Kale: An excellent source of vitamin C, pro-vitamin A, lutein and glucosinolates. CyTA - Journal of Food, 12(3), 298-303. https://doi.org/10.1080/19476337.2013.850743

Bhandari, S. R., Jo, J. S., & Lee, J. G. (2015). Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules, 20(9), 15827-15841. https://doi.org/10.3390/molecules200915827

Bianchi, G., Picchi, V., Tava, A., Doria, F., Walley, P. G., Dever, L., di Bella, M. C., Arena, D., Ammar, H. B., Scalzo, R. L., & Branca, F. (2024). Insights into the phytochemical composition of selected genotypes of organic kale (Brassica oleracea L. var. acephala). Journal of Food Composition and Analysis, 125, 105721. https://doi.org/10.1016/j.jfca.2023.105721

Cartea, M. E., & Velasco, P. (2008). Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochemistry Reviews, 7, 213-229. https://doi.org/10.1007/s11101-007-9072-2

Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2011). Phenolic compounds in Brassica vegetables. Molecules, 16(1), 251-280. https://doi.org/10.3390/molecules16010251

Cazzonelli, C. I. (2011). Carotenoids in nature: insights from plants and beyond. Functional Plant Biology, 38(11), 833-847. https://doi.org/10.1071/fp11192

Chang, J., Wang, M., Jian, Y., Zhang, F., Zhu, J., Wang, Q., & Sun, B. (2019). Health-promoting phytochemicals and antioxidant capacity in different organs from six varieties of Chinese kale. Scientific Reports, 9, 20344. https://doi.org/10.1038/s41598-019-56671-w

Chauhan, J., Prathibha, M. D., Singh, P., Choyal, P., Mishra, U. N., Saha, D., Kumar, R., Anuragi, H., Pandey, S., Bose, B., Mehta, B., Dey, P., Dwivedi, K. K., Gupta, N. K., & Singhal, R. K. (2023). Plant photosynthesis under abiotic stresses: Damages, adaptive, and signaling mechanisms. Plant Stress, 10, 100296. https://doi.org/10.1016/j.stress.2023.100296

Chen, G.-C., Koh, W.-P., Yuan, J.-M., Qin, L.-Q., & van Dam, R. M. (2018). Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: results from the Singapore Chinese health study and meta-analysis. British Journal of Nutrition, 119(9), 1057-1067. https://doi.org/10.1017/s0007114518000119

Connolly, E. L., Sim, M., Travica, N., Marx, W., Beasy, G., Lynch, G. S., Bondonno, C. P., Lewis, J. R., Hodgson, J. M., & Blekkenhorst, L. C. (2021). Glucosinolates from cruciferous vegetables and their potential role in chronic disease: Investigating the preclinical and clinical evidence. Frontiers in Pharmacology, 12, 767975. https://doi.org/10.3389/fphar.2021.767975

Cuong, D. M., Ha, T. W., Park, C. H., Kim, N. S., Yeo, H. J., Chun, S. W., Kim, C., & Park, S. U. (2019). Effects of LED lights on expression of genes involved in phenylpropanoid biosynthesis and accumulation of phenylpropanoids in wheat sprout. Agronomy, 9(6), 307. https://doi.org/10.3390/agronomy9060307

Demir, K., Sarıkamış, G., & Seyrek, G. C. (2023). Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chemistry, 401, 134088. https://doi.org/10.1016/j.foodchem.2022.134088

Dickinson, A. J., Lehner, K., Mi, J., Jia, K.-P., Mijar, M., Dinneny, J., Al-Babili, S., & Benfey, P. N. (2019). β-Cyclocitral is a conserved root growth regulator. Proceedings of the National Academy of Sciences of the United States of America, 116(21), 10563-10567. https://doi.org/10.1073/pnas.1821445116

Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18-26. https://doi.org/10.1016/j.abb.2018.06.001

Favela-González, K. M., Hernández-Almanza, A. Y., & De la Fuente-Salcido, N. M. (2020). The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. Journal of Food Biochemistry, 44(10), e13414. https://doi.org/10.1111/jfbc.13414

Felemban, A., Braguy, J., Zurbriggen, M. D., & Al-Babili, S. (2019). Apocarotenoids involved in plant development and stress response. Frontiers in Plant Science, 10, 1168. https://doi.org/10.3389/fpls.2019.01168

Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466-488. https://doi.org/10.3390/nu6020466

Frede, K., Schreiner, M., Zrenner, R., Graefe, J., & Baldermann, S. (2018). Carotenoid biosynthesis of pak choi (Brassica rapa ssp. chinensis) sprouts grown under different light-emitting diodes during the diurnal course. Photochemical and Photobiological Sciences, 17, 1289-1300. https://doi.org/10.1039/c8pp00136g

Frede, K., Winkelmann, S., Busse, L., & Baldermann, S. (2023). The effect of LED light quality on the carotenoid metabolism and related gene expression in the genus Brassica. BMC Plant Biology, 23, 328. https://doi.org/10.1186/s12870-023-04326-4

Ghumman, A., Kaur, A., & Singh, N. (2016). Impact of germination on flour, protein and starch characteristics of lentil (Lens culinari) and horsegram (Macrotyloma uniflorum L.) lines. LWT - Food Science and Technology, 65, 137-144. https://doi.org/10.1016/j.lwt.2015.07.075

Giuliano, G. (2017). Provitamin A biofortification of crop plants: a gold rush with many miners. Current Opinion in Biotechnology, 44, 169-180. https://doi.org/10.1016/j.copbio.2017.02.001

Hasan, M. M., Bashir, T., Ghosh, R., Lee, S. K., & Bae, H. (2017). An overview of LEDs' effects on the production of bioactive compounds and crop quality. Molecules, 22(9), 1420. https://doi.org/10.3390/molecules22091420

Hashimoto, H., Uragami, C., & Cogdell, R. J. (2016). Carotenoids and Photosynthesis. In C. Stange (Eds.), Carotenoids in Nature (Vol. 79, pp. 111-139). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-39126-7_4

Healthline. (2024). Raw Sprouts: Benefits and Potential Risks. Retrieved form https://www.healthline.com

Johkan, M., Shoji, K., Goto, F., Hashida, S., & Yoshihara, T. (2010). Blue Light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. Hortscience, 45(2), 1809-1814. https://doi.org/10.21273/HORTSCI.45.12.1809

Kim, Y. J., Kim, Y. B., Li, X., Choi, S. R., Park, S., Park, J. S., Lim, Y. P., & Park, S. U. (2015). Accumulation of phenylpropanoids by white, blue, and red light irradiation and their organ-specific distribution in Chinese cabbage (Brassica rapa ssp. pekinensis). Journal of Agricultural and Food Chemistry, 63(30), 6772-6778. https://doi.org/10.1021/acs.jafc.5b02086

Kochetova, G. V., Avercheva, O. V., Bassarskaya, E. M., Kushunina, M., & Zhigalova, T. V. (2022). Effects of red and blue LED light on the growth and photosynthesis of barley (Hordeum vulgare L.) seedlings. Journal of Plant Growth Regulation, 42, 1804-1820. https://doi.org/10.1007/s00344-022-10661-x

Kopsell, D. A., & Sams, C. E. (2013). Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. Journal of the American Society for Horticultural Science, 138(1), 31-37. https://doi.org/10.21273/JASHS.138.1.31

Kumar, S., Abedin, M. M., Singh, A. K., & Das, S. (2020). Role of Phenolic Compounds in Plant-Defensive Mechanisms. In R. Lone, R. Shuab & A. N. Kamili (Eds.), Plant Phenolics in Sustainable Agriculture (Vol. 1, pp. 517-532). Singapore, Springer. https://doi.org/10.1007/978-981-15-4890-1_22

Lännenpää, M. (2014). Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. Plant Cell Reports, 33, 1377-1388. https://doi.org/10.1007/s00299-014-1623-6

Lee, M. K., Arasu, M. V., Park, S., Byeon, D. H., Chung, S.-O., Park, S. U., Yong, P., & Sun, J. (2016). LED lights enhance metabolites and antioxidants in Chinese cabbage and Kale. Brazilian Archives of Biology and Technology, 59, e16150546. https://doi.org/10.1590/1678-4324-2016150546

Lee, S. Y., Kwon, H., Kim, J. K., Park, C. H., Sathasivam, R., & Park, S. U. (2023). Comparative analysis of glucosinolate and phenolic compounds in green and red Kimchi cabbage (Brassica rapa L. ssp. pekinensis) hairy roots after exposure to light and dark conditions. Horticulturae, 9(4), 466. https://doi.org/10.3390/horticulturae9040466

Li, H., Tang, C., Xu, Z., Liu, X., & Han, X. (2012). Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). Journal of Agricultural Science, 4(4), 262. https://doi.org/10.5539/jas.v4n4p262

Liang, M.-H., Zhu, J., & Jiang, J.-G. (2018). Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Critical Reviews in Food Science and Nutrition, 58(14), 2314-2333. https://doi.org/10.1080/10408398.2017.1322552

Life, G. (2024). Kale production. Retrieved from https://www.greenlife.co.ke/kale-production/

Lin, L.-Z., & Harnly, J. M. (2010). Phenolic component profiles of mustard greens, yu choy, and 15 other brassica vegetables. Journal of Agricultural and Food Chemistry, 58(11), 6850-6857. https://doi.org/10.1021/jf1004786

Liu, Z., Shi, J., Wan, J., Pham, Q., Zhang, Z., Sun, J., Yu, L., Luo, Y., Wang, T. T. Y., & Chen, P. (2022). Profiling of polyphenols and glucosinolates in kale and broccoli microgreens grown under chamber and windowsill conditions by ultrahigh-performance liquid chromatography high-resolution mass spectrometry. ACS Food Science and Technology, 2(1), 101-113. https://doi.org/10.1021/acsfoodscitech.1c00355

Luang-In, V., Saengha, W., Buranrat, B., Chantiratikul, A., & Ma, N. L. (2020). Cytotoxicity of selenium-enriched Chinese kale (Brassica oleracea var. alboglabra L.) seedlings against Caco-2, MCF-7 and HepG2 cancer cells. Pharmacognosy Journal, 12(4), 674-681. https://doi.org/10.5530/pj.2020.12.99

Manivannan, A., Soundararajan, P., Halimah, N., Ko, C. H., & Jeong, B. R. (2015). Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Horticulture, Environment, and Biotechnology, 56, 105-113. https://doi.org/10.1007/s13580-015-0114-1

Mark, R., Lyu, X., Lee, J. J. L., Parra-Saldívar, R., & Chen, W. N. (2019). Sustainable production of natural phenolics for functional food applications. Journal of Functional Foods, 57, 233-254. https://doi.org/10.1016/j.jff.2019.04.008

Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., & Kurata, K. (2007). Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology, 45(3), 189-198. https://doi.org/10.2525/ecb.45.189

Olsen, H., Aaby, K., & Borge, G. I. A. (2009). Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn. Journal of Agricultural and Food Chemistry, 57(7), 2816-2825. https://doi.org/10.1021/jf803693t

Oussaid, S., Chibane, M., Madani, K., Amrouche, T., Achat, S., Dahmoune, F., Houali, K., Rendueles, M., & Diaz, M. (2017). Optimization of the extraction of phenolic compounds from Scirpus holoschoenus using a simplex centroid design for antioxidant and antibacterial applications. LWT – Food Science and Technology, 86, 635-642. https://doi.org/10.1016/j.lwt.2017.08.064

Panche, A. N., Diwan, A. D., & Chandra, S. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41

Park, C. H., Kim, N. S., Park, J. S., Lee, S. Y., Lee, J.-W., & Park, S. U. (2019). Effects of light-emitting diodes on the accumulation of glucosinolates and phenolic compounds in sprouting canola (Brassica napus L.). Foods, 8(2), 76. https://doi.org/10.3390/foods8020076

Park, C. H., Park, Y. E., Yeo, H. J., Kim, J. K., & Park, S. U. (2020a). Effects of light-emitting diodes on the accumulation of phenolic compounds and glucosinolates in Brassica juncea sprouts. Horticulturae, 6(4), 77. https://doi.org/10.3390/horticulturae6040077

Park, S.-Y., Park, W. T., Park, Y. C., Ju, J. I., Park, S. U., & Kim, J. K. (2012). Metabolomics for the quality assessment of Lycium chinense fruits. Bioscience, Biotechnology, and Biochemistry, 76(12), 2188-2194. https://doi.org/10.1271/bbb.120453

Park, W. T., Yeo, S. K., Sathasivam, R., Park, J. S., Kim, J. K., & Park, S. U. (2020b). Influence of light-emitting diodes on phenylpropanoid biosynthetic gene expression and phenylpropanoid accumulation in Agastache rugosa. Applied Biological Chemistry, 63, 25. https://doi.org/10.1186/s13765-020-00510-4

Prieto, M. A., López, C. J., & Simal-Gandara, J. (2019). Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Advances in Food and Nutrition Research, 90, 305-350. https://doi.org/10.1016/bs.afnr.2019.02.008

Qian, H., Liu, T., Deng, M., Miao, H., Cai, C., Shen, W., & Wang, Q. (2016). Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chemistry, 196, 1232-1238. https://doi.org/10.1016/j.foodchem.2015.10.055

Raiola, A., Errico, A., Petruk, G., Monti, D. M., Barone, A., & Rigano, M. M. (2017). Bioactive compounds in Brassicaceae vegetables with a role in the prevention of chronic diseases. Molecules, 23(1), 15. https://doi.org/10.3390/molecules23010015

Šamec, D., Urlić, B., & Salopek-Sondi, B. (2019). Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition, 59(15), 2411-2422. https://doi.org/10.1080/10408398.2018.1454400

Samuolienė, G., Brazaitytė, A., Jankauskienė, J., Viršilė, A., Sirtautas, R., Novičkovas, A., Sakalauskienė, S., Sakalauskaitė, J., & Duchovskis, P. (2013). LED irradiance level affects growth and nutritional quality of Brassica microgreens. Open Life Sciences, 8(12), 1241-1249. https://doi.org/10.2478/s11535-013-0246-1

Sathasivam, R., Park, S. U., Kim, J. K., Park, Y. J., Kim, M. C., Nguyen, B. V., & Lee, S. Y. (2023). Metabolic profiling of primary and secondary metabolites in kohlrabi (Brassica oleracea var. gongylodes) sprouts exposed to different light-emitting diodes. Plants, 12(6), 1296. https://doi.org/10.3390/plants12061296

Sibian, M. S., Saxena, D. C., & Riar, C. S. (2017). Effect of germination on chemical, functional and nutritional characteristics of wheat, brown rice and triticale: a comparative study. Journal of the Science of Food and Agriculture, 97(13), 4643-4651. https://doi.org/10.1002/jsfa.8336

Sikora, E., & Bodziarczyk, I. (2013). Influence of diet with kale on lipid peroxides and malondialdehyde levels in blood serum of laboratory rats over intoxication with paraquat. Acta scientiarum Polonorum Technologia alimentaria, 12(1), 91-99.

Singh, A. K., Rehal, J., Kaur, A., & Jyot, G. (2015). Enhancement of attributes of cereals by germination and fermentation: a review. Critical Reviews in Food Science and Nutrition, 55(11), 1575-1589. https://doi.org/10.1080/10408398.2012.706661

Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101, 1-16. https://doi.org/10.1016/j.foodres.2017.09.026

Song, Y., Qiu, K., Gao, J., & Kuai, B. (2020). Molecular and physiological analyses of the effects of red and blue LED light irradiation on postharvest senescence of pak choi. Postharvest Biology and Technology, 164, 111155. https://doi.org/10.1016/j.postharvbio.2020.111155

Sun, T., & Li, L. (2020). Toward the 'golden' era: The status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Science, 290, 110331. https://doi.org/10.1016/j.plantsci.2019.110331

Tan, W. K., Goenadie, V., Lee, H. W., Liang, X., Loh, C. S., Ong, C. N., & Tan, H. T. W. (2020). Growth and glucosinolate profiles of a common Asian green leafy vegetable, Brassica rapa subsp. chinensis var. parachinensis (choy sum), under LED lighting. Scientia Horticulturae, 261, 108922. https://doi.org/10.1016/j.scienta.2019.108922

Tariq, U., Ali, M., & Abbasi, B. H. (2014). Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L. Journal of Photochemistry and Photobiology B: Biology, 130, 264-271. https://doi.org/10.1016/j.jphotobiol.2013.11.026

Thavarajah, D., Thavarajah, P., Abare, A., Basnagala, S., Lacher, C., Smith, P., & Combs, G. F. (2016). Mineral micronutrient and prebiotic carbohydrate profiles of USA-grown kale (Brassica oleracea L. var. acephala). Journal of Food Composition and Analysis, 52, 9-15. https://doi.org/10.1016/j.jfca.2016.07.003

Thwe, A. A., Kim, Y. B., Li, X., Seo, J. M., Kim, S.-J., Suzuki, T., Chung, S.-O., & Park, S. U. (2014). Effects of light-emitting diodes on expression of phenylpropanoid biosynthetic genes and accumulation of phenylpropanoids in Fagopyrum tataricum sprouts. Journal of Agricultural and Food Chemistry, 62(21), 4839-4845. https://doi.org/10.1021/jf501335q

Uarrota, V. G., Stefen, D. L. V., Leolato, L. S., Gindri, D. M., & Nerling, D. (2018). Revisiting carotenoids and their role in plant stress responses: From biosynthesis to plant signaling mechanisms during stress. In D. K. Gupta, J. M. Palma & F. J. Corpas (Eds.), Antioxidants and Antioxidant Enzymes in Higher Plants (pp. 207-232). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-75088-0_10

Velmurugan, B. K., Rathinasamy, B., Lohanathan, B. P., Thiyagarajan, V., & Weng, C.-F. (2018). Neuroprotective Role of Phytochemicals. Molecules, 23(10), 2485. https://doi.org/10.3390/molecules23102485

Wang, Z., Li, S., Ge, S., & Lin, S. (2020). Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. Journal of Agricultural and Food Chemistry, 68(11), 3330-3343. https://doi.org/10.1021/acs.jafc.9b06574

Wani, T. A., Bhat, I. A., Guleria, K., Fayaz, M., Anju, T., Haritha, K., Kumar, A., & Kaloo, Z. A. (2022). Phytochemicals: Diversity, sources and their roles. In M. K. Swamy & A. Kumar (Eds.), Phytochemical Genomics (pp. 3-33). Singapore: Springer. https://doi.org/10.1007/978-981-19-5779-6_1

Ware, M. (2020). What are the health benefits of kale? Retrieved from https://www.medicalnewstoday.com/articles/270435.php

Yeo, H. J., Park, C. H., Lee, K. B., Kim, J. K., Park, J. S., Lee, J.-W., & Park, S. U. (2018). Metabolic analysis of Vigna unguiculata sprouts exposed to different light-emitting diodes. Natural Product Communications, 13(10). https://doi.org/10.1177/1934578X1801301029

Zheng, X., Giuliano, G., & Al-Babili, S. (2020). Carotenoid biofortification in crop plants: citius, altius, fortius. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865(11), 158664. https://doi.org/10.1016/j.bbalip.2020.158664

Published

27-04-2024

How to Cite

Bungala, L. T. da C., Sathasivam, R., Park, J. S., Kim, J. K., & Park, S. U. (2024). Effects of light-emitting diodes on the morphology and accumulation of glucosinolates, carotenoids and phenolic acids in red kale sprouts. Journal of Aridland Agriculture, 10, 43–50. https://doi.org/10.25081/jaa.2024.v10.8895

Issue

Section

Articles