Antifungal properties of cardamom (Elettaria cardamomum) root exudate against Ganoderma boninense
DOI:
https://doi.org/10.25081/cb.2025.v16.9675Keywords:
Ganoderma boninense, Cardamom, Root exudates, Antifungal activity, AllelopathyAbstract
Ganoderma boninense, the causal agent of basal stem rot (BSR), poses a significant threat to oil palm plantations, resulting in severe economic losses and limited effective control options. This study investigates the antifungal properties of root exudates from three cultivars of cardamom (Elettaria cardamomum) as a sustainable alternative for BSR management. Root exudates were collected from eight cardamom samples and tested in vitro against G. boninense at concentrations of 1.25%, 5%, and 20% using malt extract agar (MEA) medium. Fungal growth inhibition was assessed by measuring colony diameter and electrical conductivity (EC) to evaluate membrane integrity. All exudate samples exhibited varying degrees of antifungal activity, with maximum inhibition across the tested concentrations ranging from 13.4% to 39.5%. The degree of inhibition depended on both the sample and concentration of the exudate, with no clear correlation between cultivar origin and antifungal efficacy. Increased EC values in treated media suggest that the inhibition mechanism involves hyphal membrane damage. This study is the first to report the antifungal activity of cardamom root exudates against G. boninense, highlighting their potential as natural agents for sustainable disease management in oil palm plantations.
Downloads
References
Abdullah, Asghar, A., Butt, M. S., Shahid, M., & Huang, Q. (2017). Evaluating the antimicrobial potential of green cardamom essential oil focusing on quorum sensing inhibition of Chromobacterium violaceum. Journal of Food Science and Technology, 54(8), 2306-2315. https://doi.org/10.1007/s13197-017-2668-7
Dinata, D. I., Maharani, R., Muttaqin, F. Z., & Supratman, U. (2024). Phytochemistry and biological activities of Amomum species. Indonesian Journal of Chemistry, 24(6), 1883-1905. https://doi.org/10.22146/ijc.95402
Flood, J., Bridge, P. D., & Pilotti, C. A. (2022). Basal stem rot of oil palm revisited. Annals of Applied Biology, 181(2), 160-181. https://doi.org/10.1111/aab.12772
Hussien, A. M., & Abbas, M. S. (2023). Effect of allelopathic potential of some plants root exudates concerning growth and pathogenicity of some fungus on Brassica oleracea varplant. IOP Conference Series: Earth and Environmental Science, 1158, 072006. https://doi.org/10.1088/1755-1315/1158/7/072006
Kamu, A., Phin, C. K., Seman, I. A., Gabda, D., & Mun, H. C. (2021). Estimating the yield loss of oil palm due to Ganoderma basal stem rot disease by using Bayesian model averaging. Journal of Oil Palm Research, 33, 46-55. https://doi.org/10.21894/jopr.2020.0061
Karlina, L., Suwandi, S., Muslim, A., Damiri, N., Rohim, A. M., & Negara, Z. P. (2024). Antifungal activity of turmeric rhizome extract against Ganoderma boninense. Journal of Scientific Agriculture, 8, 88-91. https://doi.org/10.25081/jsa.2024.v8.9292
Khoo, Y. W., & Chong, K. P. (2023). Ganoderma boninense: general characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 14, 1156869. https://doi.org/10.3389/fpls.2023.
Khuat, Q. V., Kalashnikova, E. A., Nguyen, H. T., Slovareva, O, Y., & Kirakosyan, R. N. (2022). Antifungal activity of Black cardamom (Amomum tsao-ko Crevost et Lemairé) plant extracts against Fusarium oxysporum Schlechtend and their prospect of developing fungicide for sustainable agricultural production. IOP Conference Series: Earth and Environmental Science, 1112, 012103. https://doi.org/10.1088/1755-1315/1112/1/012103
Kurihara, J., Koo, V.-C., Guey, C. W., Lee, Y. P., & Abidin, H. (2022). Early detection of basal stem rot disease in oil palm tree using unmanned aerial vehicle-based hyperspectral imaging. Remote Sensing, 14(3), 799. https://doi.org/10.3390/rs14030799
Munandar, R. P., Suwandi, S., & Suparman, S. (2021). Pengaruh tumpangsari dengan tanaman rimpang terhadap infeksi awal Ganoderma boninense pada bibit kelapa sawit (Elaeis guineensis). Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 18(1), 34. http://dx.doi.org/10.31851/sainmatika.v17i3.5738
Noumi, E., Alshammari, G. S., Zmantar, T., Bazaid, A. S., Alabbosh, K. F., Elasbali, A. M., Abu Al-Soud, W., Alrashidi, S. G., & Snoussi, M. (2022). Antibiofilm potential and exoenzyme inhibition by Elettaria cardamomum essential oil in Candida spp. strains. Life, 12(11), 1756. https://doi.org/10.3390/life12111756
OuYang, Q., Liu, Y., Oketch, O. R., Zhang, M., Shao, X., & Tao, N. (2021). Citronellal exerts its antifungal activity by targeting ergosterol biosynthesis in Penicillium digitatum. Journal of Fungi, 7(6), 432. https://doi.org/10.3390/jof7060432
Rahmadhani, T. P., Suwandi, S., & Pujiastuti, Y. (2018). Growth response of Ganoderma sp. mycelium treated with root exudates of herbaceous plants. Biovalentia: Biological Research Journal, 4(1). https://doi.org/10.24233/BIOV.4.1.2018.88
Sun, J., Yang, J., Zhao, S., Yu, Q., Weng, L., & Xiao, C. (2023). Root exudates influence rhizosphere fungi and thereby synergistically regulate Panax ginseng yield and quality. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1194224
Suwandi, S., Alesia, M., Munandar, R. P., Fadli, R., Suparman, S., Irsan, C., & Muslim, A. (2024). The suppression of Ganoderma boninense on oil palm under mixed planting with taro plants. Biodiversitas Journal of Biological Diversity, 25(3), 1143-1150. https://doi.org/10.13057/biodiv/d250329
Suwandi, S., Munandar, R. P., Suparman, S., Irsan, C., & Muslim, A. (2023). Mixed planting with rhizomatous plants interferes with Ganoderma disease in oil palm. Journal of Oil Palm Research, 35(2), 354-364. https://doi.org/10.21894/jopr.2022.0043
Suwandi, S., Rahmadhani, T. P., Suparman, S., Irsan, C., & Muslim, A. (2022). Allelopathic potential of root exudates from perennial herbaceous plants against Ganoderma boninense. IOP Conference Series: Earth and Environmental Science, 976, 012053. https://doi.org/10.1088/1755-1315/976/1/012053
Teneva, D., Denkova, Z., Goranov, B., Denkova, R., Kostov, G., Atanasova, T., & Merdzhanov, P. (2016). Chemical composition and antimicrobial activity of essential oils from black pepper, cumin, coriander and cardamom against some pathogenic microorganisms. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(2), 39-52. https://doi.org/10.1515/aucft-2016-0014
Upasani, M. L., Gurjar, G. S., Kadoo, N. Y., & Gupta, V. S. (2016). Dynamics of colonization and expression of pathogenicity related genes in Fusarium oxysporum f. sp. ciceri during chickpea vascular wilt disease progression. Plos One, 11(6), e0156490. https://doi.org/10.1371/journal.pone.0156490
Wu, J., Zhou, J., Yang, C., Kuang, Y., Qi, C., Guo, F., & Zhao, Q. (2025). The composition of root exudates between resistant and susceptible konjac species against soft rot disease. Journal of Plant Diseases and Protection, 132, 83. https://doi.org/10.1007/s41348-025-01073-6
Younus, N. K. (2023). Cardamom (Elettaria cardamomum) seeds extract as antimicrobial and wound healing agent. E3S Web of Conferences, 391, 01118. https://doi.org/10.1051/e3sconf/202339101118
Yuan, T., Hua, Y., Zhang, D., Yang, C., Lai, Y., Li, M., Ding, S., Li, S., & Chen, Y. (2024). Efficacy and antifungal mechanism of rosemary essential oil against Colletotrichum gloeosporioides. Forests, 15(2), 377. https://doi.org/10.3390/f15020377
Zakaria, L. (2023). Basal stem rot of oil palm: The pathogen, disease incidence, and control methods. Plant Disease, 107(3), 603-615. https://doi.org/10.1094/PDIS-02-22-0358-FE
Published
How to Cite
Issue
Section
Copyright (c) 2025 Anggita Aulya Trimeiwardani, Suwandi Suwandi, Chandra Irsan, A. Muslim, Mulawarman Mulawarman

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.