Antibacterial evaluation of Dalbergia latifolia (Roxb.) liquid smoke used for the treatment of bovine mastitis
DOI:
https://doi.org/10.25081/cb.2025.v16.9322Keywords:
Mastitis, Liquid smoke, Ethno-veterinary, Dairy cows, Antibacterial activityAbstract
The indigenous people of the area have long utilized medicinal plants to treat bovine mastitis. Traditional ethnoveterinary healers used plant-based techniques to treat diseased cows. Escherichia coli and Coagulase-negative Staphylococci (CoNS) bacteria infect the udder and cause mastitis, which lowers milk production. In this work condensed smoke of heartwood of Dalbergia latifolia was produced by pyrolysis at 500 °C for 8 hr and filtered with Whatman No.1. The liquid smoke was analysed with GC-MS and found 23 bioactive phytocompounds that have antibacterial activity of mastitis causing bacteria E. coli and CoNS. The antibacterial activity was carried out using disc diffusion methods with three different concentrations of liquid smoke which were 150 μL/mL, 300 μL/mL and 600 μL/mL of distilled water. The maximum inhibition average of 21.00 mm at 600 μL/mL treatment E. coli (S1) and 28.33 mm at 600 μL/mL on E. coli (S2), the positive control average value of 15.88 mm and 0.00 mm in E. coli (S1) and E. coli (S2) respectively. The maximum inhibition of 20 mm of CoNS average value 2 of 4.66 mm was estimated at 600 μL/mL treatments. The Ampicillin antibiotics disc was used to have a positive control for all the treatment. The liquid smoke of D. latifolia has higher antibacterial properties to cure mastitis disease in dairy cows.
Downloads
References
Ahmed, W., Neubauer, H., Tomaso, H., El Hofy, F. I., Monecke, S., Abd El-Tawab, A. A., & Hotzel, H. (2021). Characterization of Enterococci- and ESBL-Producing Escherichia coli Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens, 10(2), 97. https://doi.org/10.3390/pathogens10020097
Arbab, S., Ullah, H., Bano, I., Li, K., Ul Hassan, I., Wang, W., Qadeer, A., & Zhang, J. (2022). Evaluation of in vitro antibacterial effect of essential oil and some herbal plant extract used against mastitis pathogens. Veterinary Medicine and Science, 8(6), 2655-2661. https://doi.org/10.1002/vms3.959
Badawy, B., Elafify, M., Farag, A. M. M., Moustafa, S. M., Sayed-Ahmed, M. Z., Moawad, A. A., Algammal, A. M., Ramadan, H., & Eltholth, M. (2022). Ecological Distribution of Virulent Multidrug-Resistant Staphylococcus aureus in Livestock, Environment, and Dairy Products. Antibiotics, 11(11), 1651. https://doi.org/10.3390/antibiotics11111651
Boonkusol, D., Detraksa, J., & Duangsrikaew, K. (2022). Antibacterial Activity of Aqueous and Ethanol Extracts of Caesalpinia Sappan L. against Coagulase-Negative Staphylococci Isolated from subclinical bovine and caprine mastitis. Online Journal of Biological Sciences, 22(2), 230-236. https://doi.org/10.3844/ojbsci.2022.230.236
Deshmukh, V. P., Lunge, M. S., Rajurkar, A. V., Dharkar, N. S., Raut, S. R., & Dhoran, V. S. (2021). Chemical characterization and therapeutics of Dalbergia latifolia Roxb: a review. Journal of Pharmacognosy and Phytochemistry, 10(4), 340-345. https://doi.org/10.22271/phyto.2021.v10.i4d.14174
Dhandapani, T., Sasidharan, K. R., Shanmugam, G., Sadanandam, V., Vasudevan, R., Lalitha, S., & Anandalakshmi, R. (2020). Characterization and cytotoxic activity of Dalbergia latifolia wood extract. American Journal of Agriculture and Forestry, 8(5), 208-213. https://doi.org/10.11648/j.ajaf.20200805.14
Dohoo, I. R., Smith, J., Andersen, S., Kelton, D. F., Godden, S., & Mastitis Research Workers’ Conference. (2011). Diagnosing intramammary infections: Evaluation of definitions based on a single milk sample. Journal of Dairy Science, 94(1), 250-261. https://doi.org/10.3168/jds.2010-3559
Elisha, I. L., Botha, F. S., McGaw, L. J., & Eloff, J. N. (2017). The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complementary and Alternative Medicine, 17, 133. https://doi.org/10.1186/s12906-017-1645-z
Gad, H. A., Mamadalieva, N. Z., Böhmdorfer, S., Rosenau, T., Zengin, G., Mamadalieva, R. Z., Al Musayeib, N. M., & Ashour, M. L. (2021). GC-MS based identification of the volatile components of six Astragalus species from Uzbekistan and their biological activity. Plants, 10(1), 124. https://doi.org/10.3390/plants10010124
Goulart, D. B., & Mellata, M. (2022). Escherichia coli mastitis in dairy cattle: etiology, diagnosis, and treatment challenges. Frontiers in Microbiology, 13, 928346. https://doi.org/10.3389/fmicb.2022.928346
Grudlewska-Buda, K., Skowron, K., Wałecka-Zacharska, E., Wiktorczyk-Kapischke, N., Bystroń, J., Kaczmarek, A., & Gospodarek-Komkowska, E. (2021). Characterization of Escherichia coli strains derived from cow milk of subclinical and clinical cases of mastitis. Applied Sciences, 11(2), 541. https://doi.org/10.3390/app11020541
Kaczorowski, Ł., Powierska-Czarny, J., Wolko, Ł., Piotrowska-Cyplik, A., Cyplik, P., & Czarny, J. (2022). The influence of bacteria causing subclinical mastitis on the structure of the cow’s milk microbiome. Molecules, 27(6), 1829. https://doi.org/10.3390/molecules27061829
Kebede, T., Gadisa, E., & Tufa, A. (2021). Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. Plos One, 16(3), e0249253. https://doi.org/10.1371/journal.pone.0249253
Khalid, M., Siddiqui, H. H., & Freed, S. (2011). In-vitro assessment of antioxidant activity of Dalbergia latifolia barks extract against free radicals. American-Eurasian Journal of Scientific Research, 6(3), 172-177.
Liu, R., Wang, D., Zhang, P., Shao, F., Chen, L., Huang, H., & Lin, S. (2018). A new diaryl 1, 2-diketone from the heartwood of Dalbergia latifolia. Natural Product Research, 32(1), 91-96. https://doi.org/10.1080/14786419.2017.1338280
Mansur, D., Sugiwati, S., Rizal, W. A., Suryani, R., & Maryana, R. (2023). Pyrolysis of cajuput (Melaleuca leucadendron) twigs and rice (Oryza sativa) husks to produce liquid smoke-containing fine chemicals for antibacterial agent application. Biomass Conversion and Biorefinery, 13, 10561-10574. https://doi.org/10.1007/s13399-021-01896-x
Mathe, E., Sethoga, L., Mapfumari, S., Adeniran, O., Mokgotho, P., Shai, J., & Gololo, S. (2024). Phytochemical screening and characterization of volatile compounds from three medicinal plants with reported anticancer properties using GC-MS. Life, 14(11), 1375. https://doi.org/10.3390/life14111375
Nelli, A., Voidarou, C., Venardou, B., Fotou, K., Tsinas, A., Bonos, E., Fthenakis, G. C., Skoufos, I., & Tzora, A. (2022). Antimicrobial and Methicillin Resistance Pattern of Potential Mastitis-Inducing Staphylococcus aureus and Coagulase-Negative Staphylococci Isolates from the Mammary Secretion of Dairy Goats. Biology, 11(11), 1591. https://doi.org/10.3390/biology11111591
Pandey, P., Pandey, A., Yan, L., Wang, D., Pandey, V., Meikap, B. C., Huo, J., Zhang, R., & Pandey, P. K. (2021). Dairy waste and potential of small-scale biogas digester for rural energy in India. Applied Sciences, 11(22), 10671. https://doi.org/10.3390/app112210671
Prakash, P., Radha, Kumar, M., Pundir, A., Puri, S., Prakash, S., Kumari, N., Thakur, M., Rathour, S., Jamwal, R., Janjua, S., Ali, M., Bangar, S. P., Singh, C., Chandran, D., Rajalingam, S., Senapathy, M., Dhumal, S., Singh, S., ... Abdel-Daim, M. M. (2021). Documentation of commonly used ethnoveterinary medicines from wild plants of the high mountains in Shimla District, Himachal Pradesh, India. Horticulturae, 7(10), 351. https://doi.org/10.3390/horticulturae7100351
Raza, M. F., Hyder, M., Zhao, C., & Li, W. (2024). GC-MS analysis and evaluation of essential oils as volatile biopesticides: Assessing their acaricidal potential against varroa destructor. Agriculture, 14(6), 940. https://doi.org/10.3390/agriculture14060940
Sehim, A. E., Amin, B. H., Yosri, M., Salama, H. M., Alkhalifah, D. H., Alwaili, M. A., & Abd Elghaffar, R. Y. (2023). GC-MS analysis, antibacterial, and anticancer activities of Hibiscus sabdariffa L. methanolic extract: In vitro and in silico studies. Microorganisms, 11(6), 1601. https://doi.org/10.3390/microorganisms11061601
Selogatwe, K. M., Asong, J. A., Struwig, M., Ndou, R. V., & Aremu, A. O. (2021). A review of ethnoveterinary knowledge, biological activities and secondary metabolites of medicinal woody plants used for managing animal health in South Africa. Veterinary Sciences, 8(10), 228. https://doi.org/10.3390/vetsci8100228
Sharifi, S., Pakdel, A., Ebrahimi, M., Reecy, J. M., Farsani, S. F., & Ebrahimie, E. (2018). Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. Plos One, 13(2), e0191227. https://doi.org/10.1371/journal.pone.0191227
Solanki, K. M., Prajapati, B. I., Singh, R. D., Patel, A. C., Patel, R. M., & Katira, B. P. (2022). Detection of mecA gene-associated methicillin-resistance coagulase-negative staphylococci (MRCoNS) from bovine mastitis in Gujarat. Indian Journal of Animal Sciences, 92(8), 935-939. https://doi.org/10.56093/ijans.v92i8.105824
Srichok, J., Yingbun, N., Kowawisetsut, T., Kornmatitsuk, S., Suttisansanee, U., Temviriyanukul, P., & Chantong, B. (2022). Synergistic antibacterial and anti-inflammatory activities of Ocimum tenuiflorum ethanolic extract against major bacterial mastitis pathogens. Antibiotics, 11(4), 510. https://doi.org/10.3390/antibiotics11040510
Šukele, R., Lauberte, L., Kovalcuka, L., Logviss, K., Bārzdiņa, A., Brangule, A., Horváth, Z. M., & Bandere, D. (2023). Chemical profiling and antioxidant activity of Tanacetum vulgare L. Wild-Growing in Latvia. Plants, 12(10), 1968. https://doi.org/10.3390/plants12101968
Teoh, W. Y., Yong, Y. S., Razali, F. N., Stephenie, S., Shah, M. D., Tan, J. K., Gnanaraj, C., & Esa, N. M. (2023). LC-MS/MS and GC-MS analysis for the identification of bioactive metabolites responsible for the antioxidant and antibacterial activities of Lygodium microphyllum (Cav.) R. Br. Separations, 10(3), 215. https://doi.org/10.3390/separations10030215
ul Hassan, H., Murad, W., Tariq, A., & Ahmad, A. (2014). Ethnoveterinary study of medicinal plants in Malakand Valley, district Dir (lower), Khyber Pakhtunkhwa, Pakistan. Irish Veterinary Journal, 67, 6. https://doi.org/10.1186/2046-0481-67-6
Wang, H.-H., Li, M.-Y., Dong, Z.-Y., Zhang, T.-H., & Yu, Q.-Y. (2021). Preparation and characterization of ginger essential oil microcapsule composite films. Foods, 10(10), 2268. https://doi.org/10.3390/foods10102268
Wang, Y., Li, X., Jiang, Q., Sun, H., Jiang, J., Chen, S., Guan, Z., Fang, W., & Chen, F. (2018). GC-MS analysis of the volatile constituents in the leaves of 14 compositae plants. Molecules, 23(1), 166. https://doi.org/10.3390/molecules23010166
Xiong, Y., & Long, C. (2020). An ethnoveterinary study on medicinal plants used by the Buyi people in Southwest Guizhou, China. Journal of Ethnobiology and Ethnomedicine, 16, 46. https://doi.org/10.1186/s13002-020-00396-y
Xu, T., Cao, W., Huang, Y., Zhao, J., Wu, X., & Yang, Z. (2022). The prevalence of Escherichia coli derived from bovine clinical mastitis and distribution of resistance to antimicrobials in part of Jiangsu Province, China. Agriculture, 13(1), 90. https://doi.org/10.3390/agriculture13010090
Published
How to Cite
Issue
Section
Copyright (c) 2025 Tej Patel, Kalpesh Patel, Ridhdhi Patel

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.