Antibacterial evaluation of Dalbergia latifolia (Roxb.) liquid smoke used for the treatment of bovine mastitis

Authors

  • Tej Patel Biology Department, B. K. M. Science College Valsad, Veer Narmad South Gujarat University, Surat- 395007, Gujarat, India https://orcid.org/0009-0001-5527-3773
  • Kalpesh Patel Biology Department, B. K. M. Science College Valsad, Veer Narmad South Gujarat University, Surat- 395007, Gujarat, India
  • Ridhdhi Patel GMERS Medical College Valsad, Veer Narmad South Gujarat University, Surat- 395007, Gujarat, India

DOI:

https://doi.org/10.25081/cb.2025.v16.9322

Keywords:

Mastitis, Liquid smoke, Ethno-veterinary, Dairy cows, Antibacterial activity

Abstract

The indigenous people of the area have long utilized medicinal plants to treat bovine mastitis. Traditional ethnoveterinary healers used plant-based techniques to treat diseased cows. Escherichia coli and Coagulase-negative Staphylococci (CoNS) bacteria infect the udder and cause mastitis, which lowers milk production. In this work condensed smoke of heartwood of Dalbergia latifolia was produced by pyrolysis at 500 °C for 8 hr and filtered with Whatman No.1. The liquid smoke was analysed with GC-MS and found 23 bioactive phytocompounds that have antibacterial activity of mastitis causing bacteria E. coli and CoNS. The antibacterial activity was carried out using disc diffusion methods with three different concentrations of liquid smoke which were 150 μL/mL, 300 μL/mL and 600 μL/mL of distilled water. The maximum inhibition average of 21.00 mm at 600 μL/mL treatment E. coli (S1) and 28.33 mm at 600 μL/mL on E. coli (S2), the positive control average value of 15.88 mm and 0.00 mm in E. coli (S1) and E. coli (S2) respectively. The maximum inhibition of 20 mm of CoNS average value 2 of 4.66 mm was estimated at 600 μL/mL treatments. The Ampicillin antibiotics disc was used to have a positive control for all the treatment. The liquid smoke of D. latifolia has higher antibacterial properties to cure mastitis disease in dairy cows.

Downloads

Download data is not yet available.

References

Ahmed, W., Neubauer, H., Tomaso, H., El Hofy, F. I., Monecke, S., Abd El-Tawab, A. A., & Hotzel, H. (2021). Characterization of Enterococci- and ESBL-Producing Escherichia coli Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens, 10(2), 97. https://doi.org/10.3390/pathogens10020097

Arbab, S., Ullah, H., Bano, I., Li, K., Ul Hassan, I., Wang, W., Qadeer, A., & Zhang, J. (2022). Evaluation of in vitro antibacterial effect of essential oil and some herbal plant extract used against mastitis pathogens. Veterinary Medicine and Science, 8(6), 2655-2661. https://doi.org/10.1002/vms3.959

Badawy, B., Elafify, M., Farag, A. M. M., Moustafa, S. M., Sayed-Ahmed, M. Z., Moawad, A. A., Algammal, A. M., Ramadan, H., & Eltholth, M. (2022). Ecological Distribution of Virulent Multidrug-Resistant Staphylococcus aureus in Livestock, Environment, and Dairy Products. Antibiotics, 11(11), 1651. https://doi.org/10.3390/antibiotics11111651

Boonkusol, D., Detraksa, J., & Duangsrikaew, K. (2022). Antibacterial Activity of Aqueous and Ethanol Extracts of Caesalpinia Sappan L. against Coagulase-Negative Staphylococci Isolated from subclinical bovine and caprine mastitis. Online Journal of Biological Sciences, 22(2), 230-236. https://doi.org/10.3844/ojbsci.2022.230.236

Deshmukh, V. P., Lunge, M. S., Rajurkar, A. V., Dharkar, N. S., Raut, S. R., & Dhoran, V. S. (2021). Chemical characterization and therapeutics of Dalbergia latifolia Roxb: a review. Journal of Pharmacognosy and Phytochemistry, 10(4), 340-345. https://doi.org/10.22271/phyto.2021.v10.i4d.14174

Dhandapani, T., Sasidharan, K. R., Shanmugam, G., Sadanandam, V., Vasudevan, R., Lalitha, S., & Anandalakshmi, R. (2020). Characterization and cytotoxic activity of Dalbergia latifolia wood extract. American Journal of Agriculture and Forestry, 8(5), 208-213. https://doi.org/10.11648/j.ajaf.20200805.14

Dohoo, I. R., Smith, J., Andersen, S., Kelton, D. F., Godden, S., & Mastitis Research Workers’ Conference. (2011). Diagnosing intramammary infections: Evaluation of definitions based on a single milk sample. Journal of Dairy Science, 94(1), 250-261. https://doi.org/10.3168/jds.2010-3559

Elisha, I. L., Botha, F. S., McGaw, L. J., & Eloff, J. N. (2017). The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complementary and Alternative Medicine, 17, 133. https://doi.org/10.1186/s12906-017-1645-z

Gad, H. A., Mamadalieva, N. Z., Böhmdorfer, S., Rosenau, T., Zengin, G., Mamadalieva, R. Z., Al Musayeib, N. M., & Ashour, M. L. (2021). GC-MS based identification of the volatile components of six Astragalus species from Uzbekistan and their biological activity. Plants, 10(1), 124. https://doi.org/10.3390/plants10010124

Goulart, D. B., & Mellata, M. (2022). Escherichia coli mastitis in dairy cattle: etiology, diagnosis, and treatment challenges. Frontiers in Microbiology, 13, 928346. https://doi.org/10.3389/fmicb.2022.928346

Grudlewska-Buda, K., Skowron, K., Wałecka-Zacharska, E., Wiktorczyk-Kapischke, N., Bystroń, J., Kaczmarek, A., & Gospodarek-Komkowska, E. (2021). Characterization of Escherichia coli strains derived from cow milk of subclinical and clinical cases of mastitis. Applied Sciences, 11(2), 541. https://doi.org/10.3390/app11020541

Kaczorowski, Ł., Powierska-Czarny, J., Wolko, Ł., Piotrowska-Cyplik, A., Cyplik, P., & Czarny, J. (2022). The influence of bacteria causing subclinical mastitis on the structure of the cow’s milk microbiome. Molecules, 27(6), 1829. https://doi.org/10.3390/molecules27061829

Kebede, T., Gadisa, E., & Tufa, A. (2021). Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. Plos One, 16(3), e0249253. https://doi.org/10.1371/journal.pone.0249253

Khalid, M., Siddiqui, H. H., & Freed, S. (2011). In-vitro assessment of antioxidant activity of Dalbergia latifolia barks extract against free radicals. American-Eurasian Journal of Scientific Research, 6(3), 172-177.

Liu, R., Wang, D., Zhang, P., Shao, F., Chen, L., Huang, H., & Lin, S. (2018). A new diaryl 1, 2-diketone from the heartwood of Dalbergia latifolia. Natural Product Research, 32(1), 91-96. https://doi.org/10.1080/14786419.2017.1338280

Mansur, D., Sugiwati, S., Rizal, W. A., Suryani, R., & Maryana, R. (2023). Pyrolysis of cajuput (Melaleuca leucadendron) twigs and rice (Oryza sativa) husks to produce liquid smoke-containing fine chemicals for antibacterial agent application. Biomass Conversion and Biorefinery, 13, 10561-10574. https://doi.org/10.1007/s13399-021-01896-x

Mathe, E., Sethoga, L., Mapfumari, S., Adeniran, O., Mokgotho, P., Shai, J., & Gololo, S. (2024). Phytochemical screening and characterization of volatile compounds from three medicinal plants with reported anticancer properties using GC-MS. Life, 14(11), 1375. https://doi.org/10.3390/life14111375

Nelli, A., Voidarou, C., Venardou, B., Fotou, K., Tsinas, A., Bonos, E., Fthenakis, G. C., Skoufos, I., & Tzora, A. (2022). Antimicrobial and Methicillin Resistance Pattern of Potential Mastitis-Inducing Staphylococcus aureus and Coagulase-Negative Staphylococci Isolates from the Mammary Secretion of Dairy Goats. Biology, 11(11), 1591. https://doi.org/10.3390/biology11111591

Pandey, P., Pandey, A., Yan, L., Wang, D., Pandey, V., Meikap, B. C., Huo, J., Zhang, R., & Pandey, P. K. (2021). Dairy waste and potential of small-scale biogas digester for rural energy in India. Applied Sciences, 11(22), 10671. https://doi.org/10.3390/app112210671

Prakash, P., Radha, Kumar, M., Pundir, A., Puri, S., Prakash, S., Kumari, N., Thakur, M., Rathour, S., Jamwal, R., Janjua, S., Ali, M., Bangar, S. P., Singh, C., Chandran, D., Rajalingam, S., Senapathy, M., Dhumal, S., Singh, S., ... Abdel-Daim, M. M. (2021). Documentation of commonly used ethnoveterinary medicines from wild plants of the high mountains in Shimla District, Himachal Pradesh, India. Horticulturae, 7(10), 351. https://doi.org/10.3390/horticulturae7100351

Raza, M. F., Hyder, M., Zhao, C., & Li, W. (2024). GC-MS analysis and evaluation of essential oils as volatile biopesticides: Assessing their acaricidal potential against varroa destructor. Agriculture, 14(6), 940. https://doi.org/10.3390/agriculture14060940

Sehim, A. E., Amin, B. H., Yosri, M., Salama, H. M., Alkhalifah, D. H., Alwaili, M. A., & Abd Elghaffar, R. Y. (2023). GC-MS analysis, antibacterial, and anticancer activities of Hibiscus sabdariffa L. methanolic extract: In vitro and in silico studies. Microorganisms, 11(6), 1601. https://doi.org/10.3390/microorganisms11061601

Selogatwe, K. M., Asong, J. A., Struwig, M., Ndou, R. V., & Aremu, A. O. (2021). A review of ethnoveterinary knowledge, biological activities and secondary metabolites of medicinal woody plants used for managing animal health in South Africa. Veterinary Sciences, 8(10), 228. https://doi.org/10.3390/vetsci8100228

Sharifi, S., Pakdel, A., Ebrahimi, M., Reecy, J. M., Farsani, S. F., & Ebrahimie, E. (2018). Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. Plos One, 13(2), e0191227. https://doi.org/10.1371/journal.pone.0191227

Solanki, K. M., Prajapati, B. I., Singh, R. D., Patel, A. C., Patel, R. M., & Katira, B. P. (2022). Detection of mecA gene-associated methicillin-resistance coagulase-negative staphylococci (MRCoNS) from bovine mastitis in Gujarat. Indian Journal of Animal Sciences, 92(8), 935-939. https://doi.org/10.56093/ijans.v92i8.105824

Srichok, J., Yingbun, N., Kowawisetsut, T., Kornmatitsuk, S., Suttisansanee, U., Temviriyanukul, P., & Chantong, B. (2022). Synergistic antibacterial and anti-inflammatory activities of Ocimum tenuiflorum ethanolic extract against major bacterial mastitis pathogens. Antibiotics, 11(4), 510. https://doi.org/10.3390/antibiotics11040510

Šukele, R., Lauberte, L., Kovalcuka, L., Logviss, K., Bārzdiņa, A., Brangule, A., Horváth, Z. M., & Bandere, D. (2023). Chemical profiling and antioxidant activity of Tanacetum vulgare L. Wild-Growing in Latvia. Plants, 12(10), 1968. https://doi.org/10.3390/plants12101968

Teoh, W. Y., Yong, Y. S., Razali, F. N., Stephenie, S., Shah, M. D., Tan, J. K., Gnanaraj, C., & Esa, N. M. (2023). LC-MS/MS and GC-MS analysis for the identification of bioactive metabolites responsible for the antioxidant and antibacterial activities of Lygodium microphyllum (Cav.) R. Br. Separations, 10(3), 215. https://doi.org/10.3390/separations10030215

ul Hassan, H., Murad, W., Tariq, A., & Ahmad, A. (2014). Ethnoveterinary study of medicinal plants in Malakand Valley, district Dir (lower), Khyber Pakhtunkhwa, Pakistan. Irish Veterinary Journal, 67, 6. https://doi.org/10.1186/2046-0481-67-6

Wang, H.-H., Li, M.-Y., Dong, Z.-Y., Zhang, T.-H., & Yu, Q.-Y. (2021). Preparation and characterization of ginger essential oil microcapsule composite films. Foods, 10(10), 2268. https://doi.org/10.3390/foods10102268

Wang, Y., Li, X., Jiang, Q., Sun, H., Jiang, J., Chen, S., Guan, Z., Fang, W., & Chen, F. (2018). GC-MS analysis of the volatile constituents in the leaves of 14 compositae plants. Molecules, 23(1), 166. https://doi.org/10.3390/molecules23010166

Xiong, Y., & Long, C. (2020). An ethnoveterinary study on medicinal plants used by the Buyi people in Southwest Guizhou, China. Journal of Ethnobiology and Ethnomedicine, 16, 46. https://doi.org/10.1186/s13002-020-00396-y

Xu, T., Cao, W., Huang, Y., Zhao, J., Wu, X., & Yang, Z. (2022). The prevalence of Escherichia coli derived from bovine clinical mastitis and distribution of resistance to antimicrobials in part of Jiangsu Province, China. Agriculture, 13(1), 90. https://doi.org/10.3390/agriculture13010090

Published

07-04-2025

How to Cite

Patel, T., Patel, K., & Patel, R. (2025). Antibacterial evaluation of Dalbergia latifolia (Roxb.) liquid smoke used for the treatment of bovine mastitis. Current Botany, 16, 112–118. https://doi.org/10.25081/cb.2025.v16.9322

Issue

Section

Regular Articles