Titanium dioxide (TiO2) nanoparticles improved morpho-physiological characters and DNA content in Swietenia macrophylla an IUCN red listed endangered plant species
DOI:
https://doi.org/10.25081/cb.2024.v15.9139Keywords:
Chlorophylls, Cytometry, Gas Chromatography Mass Spectrometry, Nanoparticles, MahoganyAbstract
There is a great need to improve plant resilience to unpredictable environmental stresses; therefore, understanding the leading role of Titanium dioxide (TiO2) nanoparticles in alleviating plant stress is crucial for the development of abiotic stress-tolerant endangered plant species. Recently, many new methods have emerged to synthesize nanoparticles, among which the biosynthesis method deserves more attention due to its features such as being eco-friendly, and cost-efficient. The aim of the present study is to perform green synthesis of nanoparticles from extracts and investigate the effect of these nanoparticles on plants. The complete shape and size of the synthesized nanoparticles were analyzed by UV-visible spectroscopy (UV-Vis), Particle Size Analysis (PSA), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) modern instruments. The absorption peak at 310 nm wavelength obtained from UV–Visible spectroscopy analysis confirmed the synthesis of TiO2 nanoparticles (NPs). The presence of strong and broad peaks in FTIR indicated the presence of phytochemicals functional groups and the presence of NPs. SEM result showed that most of the synthesized nanoparticles had spherical angular structure and their size was 75 nm. The effects of TiO2 NPs on Swietenia macrophylla L. an endangered plant species listed in IUCN (International Union for Conservation of Nature) showed that seed germination and plant survival rates were higher than control plants and there was also significant variation in root and shoot development and growth of leaves. The growth rate of the plants was significant compared to control and the chlorophyll pigments content was also recorded significant in the treated plants. The 21 phytochemicals were identified in the plant leaves analyzed with GC-MS. The ISSR analysis result showed polymorphic DNA a band which was as mutants in phenotypic characters of plants. Flow cytometric results had shown that DNA replicate content was increased due to TiO2 NPs effect in plants treated with 200 mgL-1 showed the higher plant growth efficiency.
Downloads
References
Asokan, K., Hussain, A. Z., Gattu, R. K., & Ilangovan, A. (2024). Minor limonoid constituents from Swietenia macrophylla by simultaneous isolation using supercritical fluid chromatography and their biological activities. RSC Advances, 14(36), 26637-26647. https://doi.org/10.1039/D4RA03663H
Bazzanella, N., Bajpai, O. P., Fendrich, M., Guella, G., Miotello, A., & Orlandi, M. (2023). Ciprofloxacin degradation with a defective TiO2-x nanomaterial under sunlight. MRS Communications, 13, 1252-1259. https://doi.org/10.1557/s43579-023-00440-4
Bopape, D. A., Mathobela, S., Matinise, N., Motaung, D. E., & Hintsho-Mbita, N. C. (2023). Green synthesis of CuO-TiO2 nanoparticles for the degradation of organic pollutants: physical, optical and electrochemical properties. Catalysts, 13(1), 163. https://doi.org/10.3390/catal13010163
Cardoso, V. S. L., Valente-Amaral, A., Monteiro, R. F. M., Meira, C. L. S., de Meira, N. S., da Silva, M. N., Pinheiro, J. de J. V., Bastos, G. de N. T., Felício, J. S., & Yamada, E. S. (2024). Aqueous extract of Swietenia macrophylla leaf exerts an anti-inflammatory effect in a murine model of Parkinson’s disease induced by 6-OHDA. Frontiers in Neuroscience, 18, 1351718. https://doi.org/10.3389/fnins.2024.1351718
Chandren, S., & Rusli, R. (2022). Biosynthesis of TiO2 nanoparticles and their application as catalyst in biodiesel production. In M. Srivastava, M. A. Malik, & P. K. Mishra (Eds.), Green Nano Solution for Bioenergy Production Enhancement (pp. 127-168) Singapore: Springer. https://doi.org/10.1007/978-981-16-9356-4_6
Falcioni, R., Antunes, W. C., Demattê, J. A. M., & Nanni, M. R. (2023). A novel method for estimating chlorophyll and carotenoid concentrations in leaves: A two hyperspectral sensor approach. Sensors, 23(8), 3843. https://doi.org/10.3390/s23083843
Fomicheva, M., & Domblides, E. (2023). Mastering DNA content estimation by flow cytometry as an efficient tool for plant breeding and biodiversity research. Methods and Protocols, 6(1), 18. https://doi.org/10.3390/mps6010018
Gemachu, L. Y., & Birhanu, A. L. (2024). Green synthesis of ZnO, CuO and NiO nanoparticles using neem leaf extract and comparing their photocatalytic activity under solar irradiation. Green Chemistry Letters and Reviews, 17(1), 2293841. https://doi.org/10.1080/17518253.2023.2293841
Girigoswami, A., Deepika, B., Pandurangan, A. K., & Girigoswami, K. (2024). Preparation of titanium dioxide nanoparticles from Solanum Tuberosum peel extract and its applications. Artificial Cells, Nanomedicine, and Biotechnology, 52(1), 59-68. https://doi.org/10.1080/21691401.2023.2301068
Gou, X., & Guo, Z. (2019). Hybrid hydrophilic–hydrophobic CuO@TiO2-coated copper mesh for efficient water harvesting. Langmuir, 36(1), 64-73. https://doi.org/10.1021/acs.langmuir.9b03224
Huang, Y., Dong, Y., Ding, X., Ning, Z., Shen, J., Chen, H., & Su, Z. (2022). Effect of nano-TiO2 composite on the fertilization and fruit-setting of litchi. Nanomaterials, 12(23), 4287. https://doi.org/10.3390/nano12234287
Jaime, A. B., González, R. M., Rosales, D. H., Verdín, E. M. B., González, E. M., Noriega, R. P., González, A. M., & Morales, J. R. F. (2024). Effect of Swietenia macrophylla king and Eriobotrya japonica lindl on clinic biochemistry of hyperglycemic Wistar rats. South Florida Journal of Development, 5(2), 580-591. https://doi.org/10.46932/sfjdv5n2-013
Kumar, S., Dwivedi, A., Pandey, A. K., & Vajpayee, P. (2023). TiO2 nanoparticles alter nutrients acquisition, growth, biomacromolecules, oil composition and modulate antioxidant defense system in Mentha arvensis L. Plant Nano Biology, 3, 100029. https://doi.org/10.1016/j.plana.2023.100029
Kushwah, K. S., & Patel, S. (2020). Effect of titanium dioxide nanoparticles (TiO 2 NPs) on Faba bean (Vicia faba L.) and induced asynaptic mutation: a meiotic study. Journal of Plant Growth Regulation, 39, 1107-1118. https://doi.org/10.1007/s00344-019-10046-7
Kushwah, K. S., & Verma, D. K. (2021). Biological synthesis of metallic nanoparticles from different plant species. In P. V. Pham (Eds.), 21st century nanostructured materials-physics, chemistry, classification, and emerging applications in industry, biomedicine, and agriculture London, UK: IntechOpen Limited. https://doi.org/10.5772/intechopen.101355
Kushwah, K. S., Patel, S., & Verma, D. K. (2022). Synthesis and effect of TiO2 nanoparticles on phytotoxicity and genotoxicity in Pisum sativum L. Vegetos, 35, 204-211. https://doi.org/10.1007/s42535-021-00236-8
Li, P., Xia, Y., Song, K., & Liu, D. (2024). The Impact of nanomaterials on photosynthesis and antioxidant mechanisms in gramineae plants: Research progress and future prospects. Plants, 13(7), 984. https://doi.org/10.3390/plants13070984
Li, Y., Chen, L., Zhan, X., Liu, L., Feng, F., Guo, Z., Wang, D., & Chen, H. (2022). Biological effects of gamma-ray radiation on tulip (Tulipa gesneriana L.). PeerJ, 10, e12792. https://doi.org/10.7717/peerj.12792
Li, Y., Cheng, X., Lai, J., Zhou, Y., Lei, T., Yang, L., Li, J., Yu, X., & Gao, S. (2023). ISSR molecular markers and anatomical structures can assist in rapid and directional screening of cold-tolerant seedling mutants of medicinal and ornamental plant in Plumbago indica L. Frontiers in Plant Science, 14, 1149669. https://doi.org/10.3389/fpls.2023.1149669
Liang, Y., Liu, H., Fu, Y., Li, P., Li, S., & Gao, Y. (2023). Regulatory effects of silicon nanoparticles on the growth and photosynthesis of cotton seedlings under salt and low-temperature dual stress. BMC Plant Biology, 23, 504. https://doi.org/10.1186/s12870-023-04509-z
Mawale, K. S., Nandini, B., & Giridhar, P. (2024). Copper and silver nanoparticle seed priming and foliar spray modulate plant growth and thrips infestation in Capsicum spp. ACS Omega, 9(3), 3430-3444. https://doi.org/10.1021/acsomega.3c06961
Metwally, R. A., El Nady, J., Ebrahim, S., El Sikaily, A., El-Sersy, N. A., Sabry, S. A., & Ghozlan, H. A. (2023). Biosynthesis, characterization and optimization of TiO2 nanoparticles by novel marine halophilic Halomonas sp. RAM2: application of natural dye-sensitized solar cells. Microbial Cell Factories, 22, 78. https://doi.org/10.1186/s12934-023-02093-3
Pan, X., Nie, D., Guo, X., Xu, S., Zhang, D., Cao, F., & Guan, X. (2023). Effective control of the tomato wilt pathogen using TiO2 nanoparticles as a green nanopesticide. Environmental Science: Nano, 10(5), 1441-1452.
Pérez-Velasco, E. A., Valdez-Aguilar, L. A., Betancourt-Galindo, R., González-Fuentes, J. A., & Baylón-Palomino, A. (2023). Covered rutile-TiO2 nanoparticles enhance tomato yield and growth by modulating gas exchange and nutrient status. Plants, 12(17), 3099. https://doi.org/10.3390/plants12173099
Pulit-Prociak, J., Długosz, O., Staroń, A., Radomski, P., Domagała, D., & Banach, M. (2023). In vitro studies of titanium dioxide nanoparticles modified with glutathione as a potential drug delivery system. Nanotechnology Reviews, 12(1), 20230126. https://doi.org/10.1515/ntrev-2023-0126
Pyne, S., & Paria, K. (2022). Optimization of extraction process parameters of caffeic acid from microalgae by supercritical carbon dioxide green technology. BMC chemistry, 16, 31. https://doi.org/10.1186/s13065-022-00824-y
Rana, A., Pathak, S., Kumar, K., Kumari, A., Chopra, S., Kumar, M., Kamil, D., Srivastava, R., Kim, S.-K., Verma, R., & Sharma, S. N. (2024). Multifaceted properties of TiO 2 nanoparticles synthesized using Mangifera indica and Azadirachta indica plant extracts: antimicrobial, antioxidant, and non-linear optical activity investigation for sustainable agricultural applications. Materials Advances, 5(7), 2767-2784. https://doi.org/10.1039/D3MA00414G
Rathi, V. H., & Jeice, A. R. (2023). Green fabrication of titanium dioxide nanoparticles and their applications in photocatalytic dye degradation and microbial activities. Chemical Physics Impact, 6, 100197. https://doi.org/10.1016/j.chphi.2023.100197
Rathore, C., Yadav, V. K., Amari, A., Meena, A., Egbosiuba, T. C., Verma, R. K., Mahdhi, N., Choudhary, N., Sahoo, D. K., Chundawat, R. S., & Patel, A. (2024). Synthesis and characterization of titanium dioxide nanoparticles from Bacillus subtilis MTCC 8322 and its application for the removal of methylene blue and orange G dyes under UV light and visible light. Frontiers in Bioengineering and Biotechnology, 11, 1323249. https://doi.org/10.3389/fbioe.2023.1323249
Rathore, C., Yadav, V. K., Gacem, A., AbdelRahim, S. K., Verma, R. K., Chundawat, R. S., Gnanamoorthy, G., Yadav, K. K., Choudhary, N., Shaoo, D. K., & Patel, A. (2023). Microbial synthesis of titanium dioxide nanoparticles and their importance in wastewater treatment and antimicrobial activities: a review. Frontiers in Microbiology, 14, 1270245. https://doi.org/10.3389/fmicb.2023.1270245
Sagadevan, S., Imteyaz, S., Murugan, B., Lett, J. A., Sridewi, N., Weldegebrieal, G. K., Fatimah, I., & Oh, W.-C. (2022). A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Processing and Synthesis, 11(1), 44-63. https://doi.org/10.1515/gps-2022-0005
Sahu, S. K., Liu, M., Wang, G., Chen, Y., Li, R., Fang, D., Sahu, D. N., Mu, W., Wei, J., Liu, J., Zaho, Y., Zhang, S., Lisby, M., Liu, X., Xu, X., Li, L., Wang, S., Liu, H., & He, C. (2023). Chromosome-scale genomes of commercially important mahoganies, Swietenia macrophylla and Khaya senegalensis. Scientific Data, 10, 832. https://doi.org/10.1038/s41597-023-02707-w
Saini, R., & Kumar, P. (2023). Green synthesis of TiO2 nanoparticles using Tinospora cordifolia plant extract & its potential application for photocatalysis and antibacterial activity. Inorganic Chemistry Communications, 156, 111221. https://doi.org/10.1016/j.inoche.2023.111221
Sampayo-Maldonado, S., Ordoñez-Salanueva, C. A., Mattana, E., Way, M., Castillo-Lorenzo, E., Dávila-Aranda, P. D., Lira-Saade, R., Téllez-Valdés, O., Rodriguez-Arevalo, N. I., Ulian, T., & Flores-Ortíz, C. M. (2021). Thermal niche for seed germination and species distribution modelling of Swietenia macrophylla king (mahogany) under climate change scenarios. Plants, 10(11), 2377. https://doi.org/10.3390/plants10112377
Selvakesavan, R. K., Kruszka, D., Shakya, P., Mondal, D., & Franklin, G. (2023). Impact of nanomaterials on plant secondary metabolism. In J. M. Al-Khayri, L. M. Alnaddaf & S. M. Jain (Eds.), Nanomaterial interactions with plant cellular mechanisms and macromolecules and agricultural implications (pp. 133-170) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-031-20878-2
Setty, J., Samant, S. B., Yadav, M. K., Manjubala, M., & Pandurangam, V. (2023). Beneficial effects of bio-fabricated selenium nanoparticles as seed nanopriming agent on seed germination in rice (Oryza sativa L.). Scientific Reports, 13, 22349. https://doi.org/10.1038/s41598-023-49621-0
Singh, A., Sengar, R. S., Shahi, U. P., Rajput, V. D., Minkina, T., & Ghazaryan, K. A. (2022). Prominent effects of zinc oxide nanoparticles on roots of rice (Oryza sativa L.) grown under salinity stress. Stresses, 3(1), 33-46. https://doi.org/10.3390/stresses3010004
Singh, N., Singh, M. K., Raghuvansi, J., Yadav, R. K., & Azim, Z. (2024). Green synthesis of nano iron oxide using Emblica officinalis L. fruit extract and its impact on growth, chlorophyll content, and metabolic activity of Solanum lycopersicum L. Journal of Applied Biology & Biotechnology, 12(2), 173-181. https://doi.org/10.7324/JABB.2024.165651
Sowmya, M., Puttaswamy, A. A., Prasad, H. S. N., Geetha, N., Girija S., & Venkatachalam, P. (2023). Biogenic Synthesis of Alternanthera Sessilis Titanium Dioxide Nanoparticles (AS@TiO2NP's): A Potential Contender against Perilous Pathogens and Catalytic Degradation of Organic Dyes. Biointerface Research in Applied Chemistry, 13(5), 462.
Suarez, A. V., Satyal, P., & Setzer, W. N. (2019). The wood essential oil composition of Swietenia macrophylla from Guanacaste, Costa Rica. American Journal of Essential Oils and Natural Products, 7(1), 14-16.
Vasanth, V., Murugesh, K. A., Tilak, M., Aruna, R., Raj, P. M., & Arasakumar, E. (2023). Green synthesis of Spirulina mediated titanium dioxide nanoparticles and their characterization. Journal of Survey in Fisheries Sciences, 10(3), 21-27.
Velásquez, A. A., Urquijo, J. P., Montoya, Y. A., Susunaga, D. M., & Villanueva-Mejía, D. F. (2024). Evaluation of the application of suspensions of iron oxide magnetic nanoparticles functionalized with quaternized chitosan and phosphates on yellow maize and chili pepper plants. Interactions, 245, 27. https://doi.org/10.1007/s10751-024-01843-y
Verma, D. K., Patel, S., & Kushwah, K. S. (2020a). Green biosynthesis of silver nanoparticles and impact on growth, chlorophyll, yield and phytotoxicity of Phaseolus vulgaris L. Vegetos, 33, 648-657. https://doi.org/10.1007/s42535-020-00150-5
Verma, D. K., Patel, S., & Kushwah, K. S. (2020b). Synthesis of titanium dioxide (TiO2) nanoparticles and impact on morphological changes, seeds yield and phytotoxicity of Phaseolus vulgaris L. Tropical Plant Research, 7(1), 158-170. https://doi.org/10.22271/tpr.2020.v7.i1.021
Verma, D. K., Patel, S., & Kushwah, K. S. (2021). Effects of nanoparticles on seed germination, growth, phytotoxicity and crop improvement. Agricultural Reviews, 42(1), 1-11. https://doi.org/10.18805/ag.R-1964
Verma, S. K., Kumar, P., Mishra, A., Khare, R., & Singh, D. (2024). Green nanotechnology: illuminating the effects of bio-based nanoparticles on plant physiology. Biotechnology for Sustainable Materials, 1, 1. https://doi.org/10.1186/s44316-024-00001-2
Wang, C.-J., Zhang, Z.-X., & Wan, J.-Z. (2019). Vulnerability of global forest ecoregions to future climate change. Global Ecology and Conservation, 20, e00760. https://doi.org/10.1016/j.gecco.2019.e00760
Wang, J., Li, M., Feng, J., Yan, X., Chen, H., & Han, R. (2021). Effects of TiO2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana. Chemosphere, 281, 130809. https://doi.org/10.1016/j.chemosphere.2021.130809
Yitagesu, G. B., Leku, D. T., & Workneh, G. A. (2023). Green synthesis of TiO2 using Impatiens rothii Hook. f. leaf extract for efficient removal of methylene blue dye. ACS Omega, 8(46), 43999-44012. https://doi.org/10.1021/acsomega.3c06142
Published
How to Cite
Issue
Section
Copyright (c) 2024 Deepak Kumar Verma, Alpesh B. Thakor, Sapan Patel

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.