Analysis of inter-varietal hybridization in rice (Oryza sativa L.) indicate transgressive segregation
DOI:
https://doi.org/10.25081/cb.2024.v15.9122Keywords:
Stabilizing selection, Transgressive segregation, Genetic distance, Genetic architecture, Medicinal riceAbstract
Traits under continuous stabilizing selection may yield transgressive phenotypes in suitable cross combinations. Farmers maintained Njavara (Oryza sativa L. landrace Njavara), a poor yielding medicinal rice landrace in Kerala state over centuries for medicinal applications using short duration (60-70 days) as a selection criterion. This implies that the heading date together with several of the yield related traits, which are co-controlled by pleiotropism, were under constant stabilizing selection in Njavara. We examined the level of transgression in 13 yield related traits in F2 populations raised from crosses between Njavara and a high yielding hybrid variety Jyothi. The cross yielded transgressive phenotype in all of the 13 traits in F2 populations. Difference in the genetic architecture between Njavara and Jyothi due to the difference in the selection pressure experienced by them may have contributed to the excessive transgression observed in the study. The results highlight the value of unattractive poor yielding land races in providing alleles to lift yield barrier in high yielders, and suggest the need to examine the genetic architecture of the trait of interest in parental lines for better genetic advancement in crop improvement programmes.
Downloads
References
Albertson, R. C., & Kocher, T. D. (2005). Genetic architecture sets limits on transgressive segregation in hybrid cichlid fishes. Evolution, 59(3), 686-690. https://doi.org/10.1111/j.0014-3820.2005.tb01027.x
Biodiversity International, IRRI, & WARDA. (2007). Descriptors for wild and cultivated rice (Oryza spp.). Rome, Italy: Biodiversity International; Los Banos, Philippines: International Rice Research Institute; Africa Rice Centre, Cotonou, Benin: WARDA.
Brondani, C., Rangel, P., Brondani, R., & Ferreira, M. (2002). QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theoretical and Applied Genetics, 104, 1192-1203. https://doi.org/10.1007/s00122-002-0869-5
Cai, H.-Y., Diao, S., He, Y.-G., Zhang, L.-P., Liu, S.-J., Zhu, Y.-G., & Zhang, Z.-H. (2012). Genetic and physical mapping of qHY-8, a pleiotropic QTL for heading date and yield-related traits in rice. Euphytica, 184, 109-118. https://doi.org/10.1007/s10681-011-0581-0
Calsbeek, B., Lavergne, S., Patel, M., & Molofsky, J. (2011). Comparing the genetic architecture and potential response to selection of invasive and native populations of reed canary grass. Evolutionary Applications, 4(6), 726-735. https://doi.org/10.1111/j.1752-4571.2011.00195.x
Cavalli-Sforza, L. L., & Edwards, A. W. F. (1967). Phylogenetic analysis. Models and estimation procedures. Evolution, 21, 550-570.
Dinesh, R. R. (2014) Genetic structure of cultivated rice (Oryza sativa L.) and its progenitor Oryza rufipogon Griff. in India. Doctoral dissertation, University of Kerala.
Goff, S. A. (2011). A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding. New Phytologist, 189(4), 923-937. https://doi.org/10.1111/j.1469-8137.2010.03574.x
Gutiérrez, A. G., Carabalí, S. J., Giraldo, O. X., Martínez, C. P., Correa, F., Prado, G., Tohme, J., & Lorieux, M. (2010). Identification of a rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa × O. glaberrima introgression lines. BMC Plant Biology, 10, 6. https://doi.org/10.1186/1471-2229-10-6
Han, L., Xu, H., Zhu, J., & Lou, X. (2008). Analysis of genetic effects of nuclear–cytoplasmic interaction on quantitative traits: Genetic models for seed traits of plants. Theoretical and Applied Genetics, 116, 769-776. https://doi.org/10.1007/s00122-008-0709-3
Jose, M., Raj, R. D., Vinitha, M. R., Madhu, R., Varghese, G., Bocianowski, J., Yadav, R., Patra, B. C., Singh, O. N., Rana, J. C., Leena Kurmari, S., & Thomas, G. (2018). The prehistoric Indian Ayurvedic Rice Shashtika is an extant early domesticate with a distinct selection history. Frontiers in Plant Science, 9, 1203. https://doi.org/10.3389/fpls.2018.01203
Koide, Y., Sakaguchi, S., Uchiyama, T., Ota, Y., Tezuka, A., Nagano, A. J., Ishiguro, S., Takamure, I., & Kishima, Y. (2019). Genetic properties responsible for the transgressive segregation of days to heading in rice. G3: Genes, Genomes, Genetics, 9(5), 1655-1662. https://doi.org/10.1534/g3.119.201011
Lee, S. Y., Jeung, J.-U., & Mo, Y. (2024). Allelic combinations of Hd1, Hd16, and Ghd7 exhibit pleiotropic effects on agronomic traits in rice. G3: Genes, Genomes, Genetics, 14(3), jkad300. https://doi.org/10.1093/g3journal/jkad300
Li, L., Lu, K., Chen, Z., Mu, T., Hu, Z., & Li, X. (2008). Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics, 180(3), 1725-1742. https://doi.org/10.1534/genetics.108.091942
Liu, G., Mei, H., Liu, H., Yu, X., Zou, G., & Luo, L. (2010). Sensitivities of rice grain yield and other panicle characters to late-stage drought stress revealed by phenotypic correlation and QTL analysis. Molecular Breeding, 25, 603-613. https://doi.org/10.1007/s11032-009-9356-x
Mackay, I. J., Cockram, J., Howell, P., & Powell, W. (2021). Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnology Journal, 19(1), 26-34. https://doi.org/10.1111/pbi.13481
Mao, D., Liu, T., Xu, C., Li, X., & Xing, Y. (2011). Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice. Euphytica, 180, 261-271. https://doi.org/10.1007/s10681-011-0395-0
McCouch, S. R., Sweeney, M., Li, J., Jiang, H., Thomson, M., Septiningsih, E., Edwards, J., Moncada, P., Xiao, J., Garris, A., Tai, T., Martinez, C., Tohme, J., Sugiono, M., McClung, A., Yuan, L. P., & Ahn, S.-N. (2007). Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica, 154, 317-339. https://doi.org/10.1007/s10681-006-9210-8
Raj, R. D., Kumar, U. S., Vinitha, M. R., Patra, B. C., Singh, O. N., & Thomas, G. (2024). Discovery of a nuclear haplotype potentially useful for the identification of medicinal rice Njavara (Oryza sativa L.). Current Botany, 15, 70-75. https://doi.org/10.25081/cb.2024.v15.8844
Rieseberg, L. H., Widmer, A., Arntz, A. M., & Burke, J. M. (2003). The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1434), 1141-1147. https://doi.org/10.1098/rstb.2003.1283
Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234. https://doi.org/10.1038/72708
Sreejayan, Kumar, U. S., Varghese, G., Jacob, T. M., & Thomas, G. (2011). Stratification and population structure of the genetic resources of ancient medicinal rice (Oryza sativa L.) landrace Njavara. Genetic Resources and Crop Evolution, 58, 697-711. https://doi.org/10.1007/s10722-010-9613-1
Stelkens, R. B., Schmid, C., Selz, O., & Seehausen, O. (2009). Phenotypic novelty in experimental hybrids is predicted by the genetic distance between species of cichlid fish. BMC Evolutionary Biology, 9, 283. https://doi.org/10.1186/1471-2148-9-283
Stelkens, R., & Seehausen, O. (2009). Genetic distance between species predicts novel trait expression in their hybrids. Evolution, 63(4), 884-897. https://doi.org/10.1111/j.1558-5646.2008.00599.x
Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277(5329), 1063-1066. https://doi.org/10.1126/science.277.5329.1063
Vishnukiran, T., Neeraja, C. N., Jaldhani, V., Vijayalakshmi, P., Raghuveer Rao, P., Subrahmanyam, D., & Voleti, S. R. (2020). A major pleiotropic QTL identified for yield components and nitrogen content in rice (Oryza sativa L.) under differential nitrogen field conditions. PloS One, 15(10), e0240854. https://doi.org/10.1371/journal.pone.0240854
Wei, X., Xu, J., Guo, H., Jiang, L., Chen, S., Yu, C., Zhou, Z., Hu, P., Zhai, H., & Wan, J. (2010). DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology, 153(4), 1747-1758. https://doi.org/10.1104/pp.110.156943
Xiao, J., Li, J., Yuan, L., & Tanksley, S. D. (1996). Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theoretical and Applied Genetics, 92, 230-244. https://doi.org/10.1007/BF00223380
Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L. Zhou, H., Yu, S., Xu, C., Li, X., & Zhang, Q. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 40, 761-767. https://doi.org/10.1038/ng.143
Yan, W.-H., Wang, P., Chen, H.-X., Zhou, H.-J., Li, Q.-P., Wang, C.-R., Ding, Z.-H., Zhang, Y.-S., Yu, S.-B., Xing, Y.-Z., & Zhang, Q.-F. (2011). A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular Plant, 4(2), 319-330. https://doi.org/10.1093/mp/ssq070
YuShan, Z., Wang, J., Xu, C., & Xing, Y. (2010). Molecular dissection of genetic basis of significant correlation among five morphological traits in rice (Oryza sativa L.). Chinese Science Bulletin, 55, 3154-3160. https://doi.org/10.1007/s11434-010-1022-5
Zhao, K., Tung, C. W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A., Mezey, J., McClung, A. M., Bustamante, C. D., & McCouch, S. R. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2(1), 467. https://doi.org/10.1038/ncomms1467
Published
How to Cite
Issue
Section
Copyright (c) 2024 R. Dinesh Raj, George Varghese, Mariet Jose, George Thomas

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.