Antiviral Potential of Curcumin in Mitigating COVID-19 Effects and Post-COVID-19 Sequelae

Authors

  • T. R. Athira Research Department of Botany, M.E.S Asmabi College (Affiliated to the University of Calicut, India), P. Vemballur, Thrissur-680671, Kerala, India
  • K. C. Jisha Research Department of Botany, M.E.S Asmabi College (Affiliated to the University of Calicut, India), P. Vemballur, Thrissur-680671, Kerala, India

DOI:

https://doi.org/10.25081/cb.2025.v16.9063

Keywords:

Antiviral, COVID-19, Curcumin, Immunity, Long COVID, Nanocurcumin

Abstract

COVID-19 is a respiratory disease resulting from infection with the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) virus, which may manifest as mild, moderate, or severe symptoms. Even after recovering from the disease, some individuals may experience persistent symptoms, known as “long COVID”. Curcumin, a polyphenol extracted from Curcuma longa L., exhibits diverse medicinal properties including antiviral, anti-inflammatory, anti-thrombotic, antioxidant, antiproliferative, and immunomodulatory effects. It can potentially be a therapeutic agent for treating COVID-19 due to its ability to modulate the immune response and inhibit cytokine storms. These actions can help prevent severe difficulties like acute respiratory distress syndrome (ARDS) and multiorgan failure. Curcumin specifically targets viral entry, replication, and the molecular signalling cascade responsible for pathophysiological effects, making it a potential option for combating COVID-19 and addressing its long-term post-COVID effects on health. Using nanocarriers can overcome the limitations of curcumin’s poor bioavailability and solubility, allowing for more effective delivery to the target cells and tissues.

Downloads

References

Abdelazeem, B., Awad, A. K., Elbadawy, M. A., Manasrah, N., Malik, B., Yousaf, A., Alqasem, S., Banour, S., & Abdelmohsen, S. M. (2022). The effects of curcumin as dietary supplement for patients with COVID-19: A systematic review of randomized clinical trials. Drug Discoveries & Therapeutics, 16(1), 14-22. https://doi.org/10.5582/ddt.2022.01017

Abidi, A., Gupta, S., Agarwal, M., Bhalla, H. L., & Saluja, M. (2014). Evaluation of Efficacy of Curcumin as an Add-on therapy in Patients of Bronchial Asthma. Journal of Clinical and Diagnostic Research, 8(8), HC19-HC24. https://doi.org/10.7860/JCDR/2014/9273.4705

Ahmadi, R., Salari, S., Sharifi, M. D., Reihani, H., Rostamiani, M. B., Behmadi, M., Taherzadeh, Z., Eslami, S., Rezayat, S. M., Jaafari, M. R., & Elyasi, S. (2021). Oral nano-curcumin formulation efficacy in the management of mild to moderate outpatient COVID-19: A randomized triple-blind placebo-controlled clinical trial. Food Science & Nutrition, 9(8), 4068-4075. https://doi.org/10.1002/fsn3.2226

Alici, H., Tahtaci, H., & Demir, K. (2022). Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19-associated main enzymes. Computational Biology and Chemistry, 98, 107657. https://doi.org/10.1016/j.compbiolchem.2022.107657

Ashrafizadeh, M., Rafiei, H., Mohammadinejad, R., Afshar, E. G., Farkhondeh, T., & Samarghandian, S. (2020). Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytotherapy Research, 34(8), 1745-1760. https://doi.org/10.1002/ptr.6642

Babaei, F., Nassiri-Asl, M., & Hosseinzadeh, H. (2020). Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Science & Nutrition, 8(10), 5215-5227. https://doi.org/10.1002/fsn3.1858

Bahun, M., Jukić, M., Oblak, D., Kranjc, L., Bajc, G., Butala, M., Bozovičar, K., Bratkovič, T., Podlipnik, Č., & Poklar Ulrih, N. (2022). Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food Chemistry, 373(Pt B), 131594. https://doi.org/10.1016/j.foodchem.2021.131594

Baj, J., Karakuła-Juchnowicz, H., Teresiński, G., Buszewicz, G., Ciesielka, M., Sitarz, R., Forma, A., Karakuła, K., Flieger, W., Portincasa, P., & Maciejewski, R. (2020). COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. Journal of Clinical Medicine, 9(6), 1753. https://doi.org/10.3390/jcm9061753

Bertoncini-Silva, C., Vlad, A., Ricciarelli, R., Fassini, P. G., Suen, V. M. M., & Zingg, J.-M. (2024). Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants, 13(3), 331. https://doi.org/10.3390/antiox13030331

Bhaskar, S., Sinha, A., Banach, M., Mittoo, S., Weissert, R., Kass, J. S., Rajagopal, S., Pai, A. R., & Kutty, S. (2020). Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Frontiers in Immunology, 11, 1648. https://doi.org/10.3389/fimmu.2020.01648

Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A., & Maitra, A. (2007). Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): a novel strategy for human cancer therapy. Journal of Nanobiotechnology, 5, 3. https://doi.org/10.1186/1477-3155-5-3

Bormann, M., Alt, M., Schipper, L., van de Sand, L., Le-Trilling, V. T. K., Rink, L., Heinen, N., Madel, R. J., Otte, M., Wuensch, K., Heilingloh, C. S., Mueller, T., Dittmer, U., Elsner, C., Pfaender, S., Trilling, M., Witzke, O., & Krawczyk, A. (2021). Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro. Viruses, 13(10), 1914. https://doi.org/10.3390/v13101914

Chabot, A. B., & Huntwork, M. P. (2021). Turmeric as a Possible Treatment for COVID-19-Induced Anosmia and Ageusia. Cureus, 13(9), e17829. https://doi.org/10.7759/cureus.17829

Chang, Y., Zhai, L., Peng, J., Wu, H., Bian, Z., & Xiao, H. (2021). Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases. Biomedicine & Pharmacotherapy, 141, 111931. https://doi.org/10.1016/j.biopha.2021.111931

Chen, A., Wang, C., Zhu, W., & Chen, W. (2022). Coagulation Disorders and Thrombosis in COVID-19 Patients and a Possible Mechanism Involving Endothelial Cells: A Review. Aging and Disease, 13(1), 144-156. https://doi.org/10.14336/AD.2021.0704

Dai, J., Gu, L., Su, Y., Wang, Q., Zhao, Y., Chen, X., Deng, H., Li, W., Wang, G., & Li, K. (2018). Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. International Immunopharmacology, 54, 177-187. https://doi.org/10.1016/j.intimp.2017.11.009

Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (2021). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure & Dynamics, 39(9), 3347-3357. https://doi.org/10.1080/07391102.2020.1763201

Datta, S. C. (2021). High-Diluted-Biomedicines Turmeric Extract (TE) Ac t As Preventive Policy-Developer-Potential-21 st-Century-Pandemic COVID 19 Vaccines: Achieved Community-Medicine-Public-Health-Ecology-Green-Socio-Economy-Welfare-Science-Innovations–Technology-Communication-Applications-Issues. Archives of Community Medicine and Public Health, 7(2), 164-174. https://doi.org/10.17352/2455-5479.000157

Ghildiyal, R., Prakash, V., Chaudhary, V. K., Gupta, V., & Gabrani, R. (2020). Phytochemicals as Antiviral Agents: Recent Updates. In M. K. Swamy (Eds.), Plant-derived Bioactives (pp. 279-295) Singapore: Springer. https://doi.org/10.1007/978-981-15-1761-7_12

Goel, A., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin as "Curecumin": from kitchen to clinic. Biochemical Pharmacology, 75(4), 787-809. https://doi.org/10.1016/j.bcp.2007.08.016

Groff, D., Sun, A., Ssentongo, A. E., Ba, D. M., Parsons, N., Poudel, G. R., Lekoubou, A., Oh, J. S., Ericson, J. E., Ssentongo, P., & Chinchilli, V. M. (2021). Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Network Open, 4(10), e2128568. https://doi.org/10.1001/jamanetworkopen.2021.28568

Gupta, A., Vij, G., Sharma, S., Tirkey, N., Rishi, P., & Chopra, K. (2009). Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiology, 214(1), 33-39. https://doi.org/10.1016/j.imbio.2008.04.003

Haider, S., Naqvi, F., Tabassum, S., Saleem, S., Batool, Z., Sadir, S., Rasheed, S., Saleem, D., Nawaz, A., & Ahmad, S. (2013). Preventive effects of curcumin against drug- and starvation-induced gastric erosions in rats. Scientia Pharmaceutica, 81(2), 549-558. https://doi.org/10.3797/scipharm.1207-17

Hasanzadeh, S., Read, M. I., Bland, A. R., Majeed, M., Jamialahmadi, T., & Sahebkar, A. (2020). Curcumin: an inflammasome silencer. Pharmacological Research, 159, 104921. https://doi.org/10.1016/j.phrs.2020.104921

Hassan, F., Rehman, M. S., Khan, M. S., Ali, M. A., Javed, A., Nawaz, A., & Yang, C. (2019). Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects. Frontiers in Genetics, 10, 514. https://doi.org/10.3389/fgene.2019.00514

Hay, E., Lucariello, A., Contieri, M., Esposito, T., De Luca, A., Guerra, G., & Perna, A. (2019). Therapeutic effects of turmeric in several diseases: An overview. Chemico-Biological Interactions, 310, 108729. https://doi.org/10.1016/j.cbi.2019.108729

Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A Review of Its Effects on Human Health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100092

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280. https://doi.org/10.1016/j.cell.2020.02.052

Hooper, P. L. (2020). COVID-19 and heme oxygenase: novel insight into the disease and potential therapies. Cell Stress & Chaperones, 25(5), 707-710. https://doi.org/10.1007/s12192-020-01126-9

Huang, C., Lu, H.-F., Chen, Y.-H., Chen, J.-C., Chou, W.-H., & Huang, H.-C. (2020a). Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and -independent apoptosis via Smad or Akt signaling pathways in HOS cells. BMC Complementary Medicine and Therapies, 20, 68. https://doi.org/10.1186/s12906-020-2857-1

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020b). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

Hussain, H., Ahmad, S., Shah, S. W. A., Ullah, A., Almehmadi, M., Abdulaziz, O., Allahyani, M., Alsaiari, A. A., Halawi, M., & Alamer, E. (2022a). Investigation of Antistress and Antidepressant Activities of Synthetic Curcumin Analogues: Behavioral and Biomarker Approach. Biomedicines, 10(10), 2385. https://doi.org/10.3390/biomedicines10102385

Hussain, Y., Abdullah, Khan, F., Alsharif, K. F., Alzahrani, K. J., Saso, L., & Khan, H. (2022b). Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines, 10(12), 3180. https://doi.org/10.3390/biomedicines10123180

Huynh, T., Wang, H., & Luan, B. (2020). In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease. The Journal of Physical Chemistry Letters, 11(11), 4413-4420. https://doi.org/10.1021/acs.jpclett.0c00994

Jagetia, G. C., & Aggarwal, B. B. (2007). "Spicing up" of the immune system by curcumin. Journal of Clinical Immunology, 27, 19-35. https://doi.org/10.1007/s10875-006-9066-7

Jena, A. B., Kanungo, N., Nayak, V., Chainy, G. B. N., & Dandapat, J. (2021). Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies. Scientific Reports, 11, 2043. https://doi.org/10.1038/s41598-021-81462-7

Jennings, M. R., & Parks, R. J. (2020). Curcumin as an Antiviral Agent. Viruses, 12(11), 1242. https://doi.org/10.3390/v12111242

Karthikeyan, A., Senthil, N., & Min, T. (2020). Nanocurcumin: A Promising Candidate for Therapeutic Applications. Frontiers in Pharmacology, 11, 487. https://doi.org/10.3389/fphar.2020.00487

Kotha, R. R., & Luthria, D. L. (2019). Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules, 24(16), 2930. https://doi.org/10.3390/molecules24162930

Kuwabara, Y., Hirose, A., Lee, H., Kakinuma, T., Baba, A., & Takara, T. (2024). Effects of Highly Bioavailable Curcumin Supplementation on Common Cold Symptoms and Immune and Inflammatory Functions in Healthy Japanese Subjects: A Randomized Controlled Study. Journal of Dietary Supplements, 21(1), 71-98. https://doi.org/10.1080/19390211.2023.2185723

Liu, Z., & Ying, Y. (2020). The Inhibitory Effect of Curcumin on Virus-Induced Cytokine Storm and Its Potential Use in the Associated Severe Pneumonia. Frontiers in Cell and Developmental Biology, 8, 479. https://doi.org/10.3389/fcell.2020.00479

Mahmudpour, M., Roozbeh, J., Keshavarz, M., Farrokhi, S., & Nabipour, I. (2020). COVID-19 cytokine storm: The anger of inflammation. Cytokine, 133, 155151. https://doi.org/10.1016/j.cyto.2020.155151

Makhluf, H., Madany, H., & Kim, K. (2024). Long COVID: Long-Term Impact of SARS-CoV2. Diagnostics, 14(7), 711. https://doi.org/10.3390/diagnostics14070711

Manoharan, Y., Haridas, V., Vasanthakumar, K. C., Muthu, S., Thavoorullah, F. F., & Shetty, P. (2020). Curcumin: a Wonder Drug as a Preventive Measure for COVID19 Management. Indian Journal of Clinical Biochemistry, 35, 373-375. https://doi.org/10.1007/s12291-020-00902-9

Maurya, V. K., Kumar, S., Prasad, A. K., Bhatt, M. L. B., & Saxena, S. K. (2020). Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. VirusDisease, 31, 179-193. https://doi.org/10.1007/s13337-020-00598-8

Motohashi, N., Vanam, A., & Gollapudi, R. (2020). In silico study of Curcumin and Folic Acid as potent inhibitors of human Transmembrane protease serine 2 in the treatment of COVID-19. INNOSC Theranostics and Pharmacological Sciences, 3(2), 935. https://doi.org/10.36922/itps.v3i2.935

Mounce, B. C., Cesaro, T., Carrau, L., Vallet, T., & Vignuzzi, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Research, 142, 148-157. https://doi.org/10.1016/j.antiviral.2017.03.014

Pagliaro, P., & Penna, C. (2020). ACE/ACE2 Ratio: A Key Also in 2019 Coronavirus Disease (Covid-19)?. Frontiers in Medicine, 7, 335. https://doi.org/10.3389/fmed.2020.00335

Pawar, K. S., Mastud, R. N., Pawar, S. K., Pawar, S. S., Bhoite, R. R., Bhoite, R. R., Kulkarni, M. V., & Deshpande, A. R. (2021). Oral Curcumin With Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial. Frontiers in Pharmacology, 12, 669362. https://doi.org/10.3389/fphar.2021.669362

Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., & Xu, R. (2021). Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Design, Development and Therapy, 15, 4503-4525. https://doi.org/10.2147/DDDT.S327378

Prasad, S., & Aggarwal, B. B. (2011). Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine. In I. F. F. Benzie & S. Wachtel-Galor (Eds.), Herbal Medicine: Biomolecular and Clinical Aspects. (2nd ed.) Baca Raton, Florida: CRC Press/Taylor & Francis.

Prasad, S., Gupta, S. C., Tyagi, A. K., & Aggarwal, B. B. (2014). Curcumin, a component of golden spice: from bedside to bench and back. Biotechnology Advances, 32(6), 1053-1064. https://doi.org/10.1016/j.biotechadv.2014.04.004

Prasansuklab, A., Theerasri, A., Rangsinth, P., Sillapachaiyaporn, C., Chuchawankul, S., & Tencomnao, T. (2021). Anti-COVID-19 drug candidates: A review on potential biological activities of natural products in the management of new coronavirus infection. Journal of Traditional and Complementary Medicine, 11(2), 144-157. https://doi.org/10.1016/j.jtcme.2020.12.001

Qi, X.-J., Liu, X.-Y., Tang, L.-M.-Y., Li, P.-F., Qiu, F., & Yang, A.-H. (2020). Anti-depressant effect of curcumin-loaded guanidine-chitosan thermo-sensitive hydrogel by nasal delivery. Pharmaceutical Development and Technology, 25(3), 316-325. https://doi.org/10.1080/10837450.2019.1686524

Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., Xie, C., Ma, K., Shang, K., Wang, W., & Tian, D.-S. (2020). Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clinical Infectious Diseases, 71(15), 762-768. https://doi.org/10.1093/cid/ciaa248

Que, Y., Hu, C., Wan, K., Hu, P., Wang, R., Luo, J., Li, T., Ping, R., Hu, Q., Sun, Y., Wu, X., Tu, L., Du, Y., Chang, C., & Xu, G. (2022). Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. International Reviews of Immunology, 41(2), 217-230. https://doi.org/10.1080/08830185.2021.1884248

Rajagopal, K., Varakumar, P., Baliwada, A., & Byran, G. (2020). Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Future Journal of Pharmaceutical Sciences, 6, 104. https://doi.org/10.1186/s43094-020-00126-x

Rattis, B. A. C., Ramos, S. G., & Celes, M. R. N. (2021). Curcumin as a Potential Treatment for COVID-19. Frontiers in Pharmacology, 12, 675287. https://doi.org/10.3389/fphar.2021.675287

Saber-Moghaddam, N., Salari, S., Hejazi, S., Amini, M., Taherzadeh, Z., Eslami, S., Rezayat, S. M., Jaafari, M. R., & Elyasi, S. (2021). Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: An open label nonrandomized clinical trial. Phytotherapy Research, 35(5), 2616-2623. https://doi.org/10.1002/ptr.7004

Shaikh, J., Ankola, D. D., Beniwal, V., Singh, D., & Kumar, M. N. V. R. (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences, 37(3-4), 223-230. https://doi.org/10.1016/j.ejps.2009.02.019

Shanmugarajan, D., Prabitha, P., Kumar, B. R. P., & Suresh, B. (2020). Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets. RSC Advances, 10(52), 31385-31399. https://doi.org/10.1039/d0ra03167d

Sharif, N., Sharif, N., Khan, A., Halawani, I. F., Alzahrani, F. M., Alzahrani, K. J., De la Torre Díez, I., Vargas, D. L. R., Castilla, A. G. K., Parvez, A. K., & Dey, S. K. (2023). Prevalence and impact of long COVID-19 among patients with diabetes and cardiovascular diseases in Bangladesh. Frontiers in Public Health, 11, 1222868. https://doi.org/10.3389/fpubh.2023.1222868

Sheam, M. M., Syed, S. B., Barman, S. K., Hasan, M. R., Paul, D. K., Islam, R., & Biswas, S. K. (2020). COVID-19: the catastrophe of our time. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(4), 1-13. https://doi.org/10.5455/jabet.2020.d150

Shishodia, S., Singh, T., & Chaturvedi, M. M. (2007). Modulation of transcription factors by curcumin. In B. B. Aggarwal, Y.-J. Surh & S. Shishodia (Eds.), The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease (Vol. 595, pp. 127-148) Boston, MA: Springer. https://doi.org/10.1007/978-0-387-46401-5_4

Shuto, T., Ono, T., Ohira, Y., Shimasaki, S., Mizunoe, S., Watanabe, K., Suico, M. A., Koga, T., Sato, T., Morino, S., Sato, K., & Kai, H. (2010). Curcumin decreases toll-like receptor-2 gene expression and function in human monocytes and neutrophils. Biochemical and Biophysical Research Communications, 398(4), 647-652. https://doi.org/10.1016/j.bbrc.2010.06.126

Singh, K. (2020). Potential role of Curcumin against viral infections with a view on structure and pathogenesis of COVID-19. AIJR Preprints, 10.

Singla, G., Singla, T., & Singla, S. (2020). COVID-19 Pandemic-A literature review. International Journal of Research and Review, 7(6), 282-93.

Soni, V. K., Mehta, A., Ratre, Y. K., Tiwari, A. K., Amit, A., Singh, R. P., Sonkar, S. C., Chaturvedi, N., Shukla, D., & Vishvakarma, N. K. (2020). Curcumin, a traditional spice component, can hold the promise against COVID-19. European Journal of Pharmacology, 886, 173551. https://doi.org/10.1016/j.ejphar.2020.173551

Sudheeran, S. P., Jacob, D., Mulakal, J. N., Nair, G. G., Maliakel, A., Maliakel, B., Kuttan, R., & Krishnakumar, I. M. (2016). Safety, Tolerance, and Enhanced Efficacy of a Bioavailable Formulation of Curcumin With Fenugreek Dietary Fiber on Occupational Stress: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Journal of Clinical Psychopharmacology, 36(3), 236-243. https://doi.org/10.1097/JCP.0000000000000508

Suravajhala, R., Parashar, A., Choudhir, G., Kumar, A., Malik, B., Nagaraj, V. A., Padmanaban, G., Polavarapu, R., Suravajhala, P., & Kishor, P. B. K. (2021). Molecular docking and dynamics studies of curcumin with COVID-19 proteins. Network Modeling and Analysis in Health Informatics and Bioinformatics, 10, 44. https://doi.org/10.1007/s13721-021-00312-8

Tahmasebi, S., El-Esawi, M. A., Mahmoud, Z. H., Timoshin, A., Valizadeh, H., Roshangar, L., Varshoch, M., Vaez, A., Aslani, S., Navashenaq, J. G., Aghebati-Maleki, L., & Ahmadi, M. (2021). Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. Journal of Cellular Physiology, 236(7), 5325-5338. https://doi.org/10.1002/jcp.30233

Thimmulappa, R. K., Mudnakudu-Nagaraju, K. K., Shivamallu, C., Subramaniam, K. J. T., Radhakrishnan, A., Bhojraj, S., & Kuppusamy, G. (2021). Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon, 7(2), e06350. https://doi.org/10.1016/j.heliyon.2021.e06350

Tiyaboonchai, W., Tungpradit, W., & Plianbangchang, P. (2007). Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. International Journal of Pharmaceutics, 337(1-2), 299-306. https://doi.org/10.1016/j.ijpharm.2006.12.043

Vahedian-Azimi, A., Abbasifard, M., Rahimi-Bashar, F., Guest, P. C., Majeed, M., Mohammadi, A., Banach, M., Jamialahmadi, T., & Sahebkar, A. (2022). Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients, 14(2), 256. https://doi.org/10.3390/nu14020256

Valizadeh, H., Abdolmohammadi-Vahid, S., Danshina, S., Ziya Gencer, M., Ammari, A., Sadeghi, A., Roshangar, L., Aslani, S., Esmaeilzadeh, A., Ghaebi, M., Valizadeh, S., & Ahmadi, M. (2020). Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology, 89(Pt B), 107088. https://doi.org/10.1016/j.intimp.2020.107088

Wen, C.-C., Kuo, Y.-H., Jan, J.-T., Liang, P.-H., Wang, S.-Y., Liu, H.-G., Lee, C.-K., Chang, S.-T., Kuo, C.-J., Lee, S.-S., Hou, C.-C., Hsiao, P.-W., Chien, S.-C., Shyur, L.-F., & Yang, N.-S. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry, 50(17), 4087-4095. https://doi.org/10.1021/jm070295s

WHO. (2020). WHO COVID-19 Dashboard. Geneva: World Health Organization. Retrieved from https://covid19.who.int/

Yao, H., Lu, X., Chen, Q., Xu, K., Chen, Y., Cheng, M., Chen, K., Cheng, L., Weng, T., Shi, D., Liu, F., Wu, Z., Xie, M., Wu, H., Jin, C., Zheng, M., Wu, N., Jiang, C., & Li, L. (2020). Patient-derived SARS-CoV-2 mutations impact viral replication dynamics and infectivity in vitro and with clinical implications in vivo. Cell Discovery, 6, 76. https://doi.org/10.1038/s41421-020-00226-1

Yin, H., Guo, Q., Li, X., Tang, T., Li, C., Wang, H., Sun, Y., Feng, Q., Ma, C., Gao, C., Yi, F., & Peng, J. (2018). Curcumin Suppresses IL-1β Secretion and Prevents Inflammation through Inhibition of the NLRP3 Inflammasome. The Journal of Immunology, 200(8), 2835-2846. https://doi.org/10.4049/jimmunol.1701495

Zahedipour, F., Hosseini, S. A., Sathyapalan, T., Majeed, M., Jamialahmadi, T., Al-Rasadi, K., Banach, M., & Sahebkar, A. (2020). Potential effects of curcumin in the treatment of COVID-19 infection. Phytotherapy Research, 34(11), 2911-2920. https://doi.org/10.1002/ptr.6738

Zhou, H., Beevers, C. S., & Huang, S. (2011). The targets of curcumin. Current Drug Targets, 12(3), 332-347. https://doi.org/10.2174/138945011794815356

Zhou, Q., Zhang, L., Dong, Y., Wang, Y., Zhang, B., Zhou, S., Huang, Q., Wu, T., & Chen, G. (2024). The role of SARS-CoV-2-mediated NF-κB activation in COVID-19 patients. Hypertension Research, 47, 375-384. https://doi.org/10.1038/s41440-023-01460-2

Zhu, T., Chen, Z., Chen, G., Wang, D., Tang, S., Deng, H., Wang, J., Li, S., Lan, J., Tong, J., Li, H., Deng, X., Zhang, W., Sun, J., Tu, Y., Luo, W., & Li, C. (2019). Curcumin Attenuates Asthmatic Airway Inflammation and Mucus Hypersecretion Involving a PPARγ-Dependent NF-κB Signaling Pathway In Vivo and In Vitro. Mediators of Inflammation, 2019, 4927430. https://doi.org/10.1155/2019/4927430

Published

11-04-2025

How to Cite

Athira, T. R., & Jisha, K. C. (2025). Antiviral Potential of Curcumin in Mitigating COVID-19 Effects and Post-COVID-19 Sequelae. Current Botany, 16, 125–131. https://doi.org/10.25081/cb.2025.v16.9063

Issue

Section

Regular Articles