Analysis of secondary structure and identification of internal repeats in miRNA precursor sequences of Saccharum officinarum, Saccharum sp. and Sorghum bicolor

Authors

  • Subhadipa Sengupta Department of Botany, Bidhannagar College, EB-2, Sector-1, Salt Lake, Kolkata-700064, West Bengal, India
  • Ashmita Singha Department of Botany, Bidhannagar College, EB-2, Sector-1, Salt Lake, Kolkata-700064, West Bengal, India
  • Sayak Ganguli Post Graduate and Research Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata -700016, West Bengal, India

DOI:

https://doi.org/10.25081/cb.2025.v16.9057

Keywords:

Expressed sequence tags (ESTs), miRNAs, pre-miRNAs, Secondary structure, Simple Sequence Repeats (SSRs)

Abstract

MicroRNAs (miRNAs) are the post-transcriptional regulators of gene expression that interact with mRNA in a sequence-specific manner. These interactions are primarily regulated by the secondary structural conformation of miRNAs. In plants, miRNAs have always been a subject to extensive research to see their explicit roles in overall development, cell to cell communications, metabolism, responses to stress and pathogen invasion. Here, we aimed to gain more understanding of the secondary structure of all possible miRNA precursor sequences (pre-miRNAs from which mature miRNAs are produced) for Saccharum and Sorghum, the two closest monocot relatives among the domesticated cultivated crops. Using computational approaches, altogether, 240 different pre-miRNAs were analyzed among which three different structural patterns were observed. The structural motifs primarily consist of stem, internal loop, bulge, and terminal loop. The pre-miRNAs of Saccharum sp. were found to have the most stable secondary structure with -193.05 kcal/mol free energy suggesting their resistance to nuclease in the cell. The Simple Sequence Repeats (SSRs) within the stem region of pre-miRNAs were found to be predominant with many trinucleotides, tetranucleotides and less frequent pentanucleotide repeats. AUG/AUC was the mostly observed trinucleotide in 80 percent of the studied precursors. The occurrence of these repeat sequences at varying level suggests their role in the proper functioning of miRNAs. Likewise, SSRs provide a molecular basis for the structural conformation of pre-miRNAs. All this information is substantially required for identifying miRNA targets and designing additional miRNA-based strategies to increase crop yields and enhance plant resistance to environmental stresses.

Downloads

Download data is not yet available.

References

Attri, K., Zhang, Z., Singh, A., Sharrock, R. A., & Xie, Z. (2022). Rapid sequence and functional diversification of a miRNA superfamily targeting calcium signaling components in seed plants. The New phytologist, 235(3), 1082-1095. https://doi.org/10.1111/nph.18185

Bajczyk, M., Jarmolowski, A., Jozwiak, M., Pacak, A., Pietrykowska, H., Sierocka, I., Swida-Barteczka, A., Szewc, L., & Szweykowska-Kulinska, Z. (2023). Recent Insights into Plant miRNA Biogenesis: Multiple Layers of miRNA Level Regulation. Plants, 12(2), 342. https://doi.org/10.3390/plants12020342

Chakraborty, A., Viswanath, A., Malipatil, R., Rathore, A., & Thirunavukkarasu, N. (2020). Structural and Functional Characteristics of miRNAs in Five Strategic Millet Species and Their Utility in Drought Tolerance. Frontiers in Genetics, 11, 608421. https://doi.org/10.3389/fgene.2020.608421

Chen, X., Liu, J., Cheng, Y., & Jia, D. (2002). HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development, 129(5), 1085-1094. https://doi.org/10.1242/dev.129.5.1085

Chuck, G., Meeley, R., Irish, E., Sakai, H., & Hake, S. (2007). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics, 39(12), 1517-1521. https://doi.org/10.1038/ng.2007.20

De la Rosa, C., Lozano, L., Castillo-Ramírez, S., Covarrubias, A. A., & Reyes, J. L. (2020). Origin and Evolutionary Dynamics of the miR2119 and ADH1 Regulatory Module in Legumes. Genome Biology and Evolution, 12(12), 2355-2369. https://doi.org/10.1093/gbe/evaa205

Gupta, S. G., Basu, S., & Ganguli, S. (2022). Repetitive sequences in monocot microRNAs - targets for future bioengineering strategies for climate resilient crops. Journal of Environment and Sociobiology, 19(2), 295-306.

Heikkinen, L., Asikainen, S., & Wong, G. (2008). Identification of phylogenetically conserved sequence motifs in microRNA 5' flanking sites from C. elegans and C. briggsae. BMC Molecular Biology, 9, 105. https://doi.org/10.1186/1471-2199-9-105

Huberdeau, M. O., & Simard, M. J. (2019). A guide to microRNA-mediated gene silencing. The FEBS Journal, 286(4), 642-652. https://doi.org/10.1111/febs.14666

Islam, W., Tauqeer, A., Waheed, A., & Zeng, F. (2022). MicroRNA Mediated Plant Responses to Nutrient Stress. International Journal of Molecular Sciences, 23(5), 2562. https://doi.org/10.3390/ijms23052562

Iwakawa, H.-O., & Tomari, Y. (2015). The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends in Cell Biology, 25(11), 651-665. https://doi.org/10.1016/j.tcb.2015.07.011

Jonas, S., & Izaurralde, E. (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nature Reviews Genetics, 16, 421-433. https://doi.org/10.1038/nrg3965

Kaur, S., Seem, K., Kumar, D., Kumar, S., Kaundal, R., & Mohapatra T. (2024). Biogenesis to functional significance of microRNAs under drought stress in rice: Recent advances and future perspectives. Plant Stress, 12, 100447. https://doi.org/10.1016/j.stress.2024.100447

Kidner, C. A., & Martienssen, R. A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 428(6978), 81-84. https://doi.org/10.1038/nature02366

Kravchik, M., Stav, R., Belausov, E., & Arazi, T. (2019). Functional Characterization of microRNA171 Family in Tomato. Plants, 8(1), 10. https://doi.org/10.3390/plants8010010

Lauter, N., Kampani, A., Carlson, S., Goebel, M., & Moose, S. P. (2005). microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9412–9417. https://doi.org/10.1073/pnas.0503927102

Mallory, A. C., & Bouché, N. (2008). MicroRNA-directed regulation: to cleave or not to cleave. Trends in Plant Science, 13(7), 359-367. https://doi.org/10.1016/j.tplants.2008.03.007

Ming, R., Liu, S.-C., Lin, Y.-R., da Silva, J., Wilson, W., Braga, D., van Deynze, A., Wenslaff, T. F., Wu, K. K., Moore, P. H., Burnquist, W., Sorrells, M. E., Irvine, J. E., & Paterson, A. H. (1998). Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics, 150(4), 1663-1682. https://doi.org/10.1093/genetics/150.4.1663

Narjala, A., Nair, A., Tirumalai, V., Hari Sundar, G. V., & Shivaprasad, P. V. (2020). A conserved sequence signature is essential for robust plant miRNA biogenesis. Nucleic Acids Research, 48(6), 3103-3118. https://doi.org/10.1093/nar/gkaa077

Pagano, L., Rossi, R., Paesano, L., Marmiroli, N., & Marmiroli, M. (2021). miRNA regulation and stress adaptation in plants. Environmental and Experimental Botany, 184, 104369. https://doi.org/10.1016/j.envexpbot.2020.104369

Paul, S., Datta, S. K., & Datta, K. (2015). miRNA regulation of nutrient homeostasis in plants. Frontiers in Plant Science, 6, 232. https://doi.org/10.3389/fpls.2015.00232

Pegler, J. L., Oultram, J. M. J., Grof, C. P. L., & Eamens, A. L. (2019). Profiling the Abiotic Stress Responsive microRNA Landscape of Arabidopsis thaliana. Plants, 8(3), 58. https://doi.org/10.3390/plants8030058

Pilon, M. (2017). The copper microRNAs. New Phytologist, 213(3), 1030-1035. https://doi.org/10.1111/nph.14244

Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P. (2002). MicroRNAs in plants. Genes & Development, 16, 1616-1626. https://doi.org/10.1101/gad.1004402

Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., & Bartel, D. P. (2002). Prediction of plant microRNA targets. Cell, 110(4), 513-520. https://doi.org/10.1016/s0092-8674(02)00863-2

Rooney, L. W., & Saldivar, S. O. (2003). Sorghum. In B. Caballero, L. C. Trugo & P. M. Finglas (Eds.), Encyclopedia of Food Sciences and Nutrition (Vol. 8, pp. 5370-5375) London, UK: Academic Press.

Salvi, S., Sponza, G., Morgante, M., Tomes, D., Niu, X., Fengler, K. A., Meeley, R., Ananiev, E. V., Svitashev, S., Bruggemann, E., Li, B., Hainey, C. F., Radovic, S., Zaina, G., Rafalski, J.-A., Tingey, S. V., Miao, G.-H., Phillips, R. L., & Tuberosa, R. (2007). Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11376-11381. https://doi.org/10.1073/pnas.0704145104

Samynathan, R., Venkidasamy, B., Shanmugam, A., Ramalingam, S., & Thiruvengadam, M. (2023). Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants. Frontiers in Genetics, 14, 1272446. https://doi.org/10.3389/fgene.2023.1272446

Thiebaut, F., Grativol, C., Carnavale-Bottino, M., Rojas, C. A., Tanurdzic, M., Farinelli, L., Martienssen, R. A., Hemerly, A. S., & Ferreira, P. C. (2012). Computational identification and analysis of novel sugarcane microRNAs. BMC Genomics, 13, 290. https://doi.org/10.1186/1471-2164-13-290

Vieira, M. L. C., Santini, L., Diniz, A. L., & Munhoz, C. de F. (2016). Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology, 39(3), 312-328. https://doi.org/10.1590/1678-4685-GMB-2016-0027

Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4), 669-687. https://doi.org/10.1016/j.cell.2009.01.046

Wang, H., & Wang, H. (2015). The miR156/SPL Module, a Regulatory Hub and Versatile Toolbox, Gears up Crops for Enhanced Agronomic Traits. Molecular Plant, 8(5), 677-688. https://doi.org/10.1016/j.molp.2015.01.008

Wang, H., Li, Y., Chern, M., Zhu, Y., Zhang, L.-L., Lu, J.-H., Li, X.-P., Dang, W.-Q., Ma, X.-C., Yang, Z.-R., Yao, S.-Z., Zhao, Z.-X., Fan, J., Huang, Y.-Y., Zhang, J.-W., Pu, M., Wang, J., He, M., Li, W.-T. … Wang, W.-M. (2021). Suppression of rice miR168 improves yield, flowering time and immunity. Nature Plants, 7, 129-136. https://doi.org/10.1038/s41477-021-00852-x

Wang, X.-J., Reyes, J. L., Chua, N.-H., & Gaasterland, T. (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biology, 5, R65. https://doi.org/10.1186/gb-2004-5-9-r65

Wong, G. Y., & Millar, A. A. (2023). Target Landscape of Conserved Plant MicroRNAs and the Complexities of Their Ancient MicroRNA-Binding Sites. Plant & Cell Physiology, 64(6), 604-621. https://doi.org/10.1093/pcp/pcad019

Xu, Y., & Chen, X. (2023). microRNA biogenesis and stabilization in plants. Fundamental Research, 3(5), 707-717. https://doi.org/10.1016/j.fmre.2023.02.023

Yang, R., Li, P., Mei, H., Wang, D., Sun, J., Yang, C., Hao, L., Cao, S., Chu, C., Hu, S., Song, X., & Cao, X. (2019). Fine-Tuning of MiR528 Accumulation Modulates Flowering Time in Rice. Molecular Plant, 12(8), 1103-1113. https://doi.org/10.1016/j.molp.2019.04.009

Yu, L., Yu, X., Shen, R., & He, Y. (2005). HYL1 gene maintains venation and polarity of leaves. Planta, 221, 231-242. https://doi.org/10.1007/s00425-004-1439-7

Zhang, B. H., Pan, X. P., Wang, Q. L., Cobb, G. P., & Anderson, T. A. (2005). Identification and characterization of new plant microRNAs using EST analysis. Cell Research, 15, 336-360. https://doi.org/10.1038/sj.cr.7290302

Zhang, F., Yang, J., Zhang, N., Wu, J., & Si, H. (2022). Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Frontiers in Plant Science, 13, 919243. https://doi.org/10.3389/fpls.2022.919243

Published

28-01-2025

How to Cite

Sengupta, S., Singha, A., & Ganguli, S. (2025). Analysis of secondary structure and identification of internal repeats in miRNA precursor sequences of Saccharum officinarum, Saccharum sp. and Sorghum bicolor. Current Botany, 16, 1–9. https://doi.org/10.25081/cb.2025.v16.9057

Issue

Section

Regular Articles