Anti-inflammatory activity and identification of two ‘Sarpagan’ indole alkaloids from the leaf methanolic extract of Rauvolfia densiflora (Wall.) Benth. ex Hook. f.
DOI:
https://doi.org/10.25081/cb.2024.v15.8954Keywords:
Rauvolfia densiflora, GC-MS, Anti-inflammatory, (Z) Akuammidine, Tombozine, Indole alkaloids, Sarpagan, COX, Anti-inflammatory activityAbstract
The Apocynaceae plant group contains many bioactive compounds that are pharmacologically relevant and are used as potential medicine for many diseases. Rauvolfia densiflora Benth. ex Hook.f. (syn- Rauvolfia verticillata (Lour.) Baill.) coming under the same family known for its diverse medicinal properties. The current study was carried out to evaluate the bioactive compounds present in the extract using GC-MS analysis and to find out the anti-inflammatory potential of the extract using in-vitro methods. GC-MS analysis revealed the presence of 16 bioactive compounds with diverse pharmacological activities. Among them, Oleic Acid, 17-hydroxy-, methyl ester, trans-decahydroquinoline, and Spiro-(1,3-dioxolane-2, 3’-indolin]-2’-one possesses more important properties. Two important sarpagan indole alkaloids were also identified namely Sarpagan-16-carboxylic acid or (Z) Akuammidine and sarpagan-17-ol or Vellosiminol, which are pharmacologically important compounds with anti-inflammatory, anti-asthmatic activities. The in-vitro anti-inflammatory activity was carried out using the COX assay. COX assay showed 55.27% inhibition at a concentration of 200 μg/mL with an IC50 value of 155.38 μg/mL, this is an indication that the methanolic leaf extract R. densiflora has the potential to be developed as a non-steroidal anti-inflammatory drug (NSAID).
Downloads
References
Adizov, S., & Tashkhodjaev, B. (2019). Indole alkaloids from Vinca erecta type of sarpagine and ajmaline. European Journal of Chemistry, 10(4), 409-416. https://doi.org/10.5155/eurjchem.10.4.409-416.1907
Alabi, K. A., Lajide, L., & Owolabi, B. J. (2018). Biological activity of oleic acid and its primary amide: experimental and computational studies. Journal of Chemical Society of Nigeria, 43(2), 9-18.
Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., & Haridas, M. (2012). Anti-inflammatory Property of n-Hexadecanoic Acid: Structural evidence and kinetic assessment. Chemical Biology & Drug Design, 80(3), 434-439. https://doi.org/10.1111/j.1747-0285.2012.01418.x
Bhavana, N. S., Prakash, H. S., & Nalini, M. S. (2019). Antioxidative and L-asparaginase potentials of fungal endophytes from Rauvolfia densiflora (Apocynaceae), an ethnomedicinal species of the Western Ghats. Czech Mycology, 71(2), 187-203. https://doi.org/10.33585/cmy.71205
Bonheur, Y. D. D., Desire, D. D. P., Ernestine, N., Christophe, M., & Theophile, D. (2015). Anti-inflammatory and antinociceptive effects of the stem bark aqueous extract of Rauwolfia vomitoria (Apocynaceae). World Journal of Pharmacy and Pharmaceutical Sciences, 4(7), 90-112.
Borquaye, L. S., Laryea, M. K., Gasu, E. N., Boateng, M. A., Baffour, P. K., Kyeremateng, A., & Doh, G. (2020). Anti-inflammatory and antioxidant activities of extracts of Reissantia indica, Cissus cornifolia and Grosseria vignei. Cogent Biology, 6(1), 1785755. https://doi.org/10.1080/23312025.2020.1785755
Borrelli, L., Varriale, L., Dipineto, L., Pace, A., Menna, L. F., & Fioretti, A. (2021). Insect derive lauric acid as promising alternative strategy to antibiotics in the antimicrobial resistance scenario. Frontiers in Microbiology, 12, 620798. https://doi.org/10.3389/fmicb.2021.620798
Fawazy, N. G., Panda, S. S., Mostafa, A., Kariuki, B. M., Bekheit, M. S., Moatasim, Y., Kutkat, O., Fayad, W., El-Manawaty, M. A., Soliman, A. A. F., El-Shiekh, R. A., Srour, A. M., Barghash, R. F., & Girgis, A. S. (2022) Spiro-3-indolin-2-ones: Synthesis, biological properties and computational studies. Research Square. https://doi.org/10.21203/rs.3.rs-1660054/v1
Fishchuk, E. V., Praliev, K. D., Arakelova, V. V., Sokolov, D. V., Filimonova, L. A., Kondratenko, E. L., Utepbergenova, R. K., Kadyrova, D. M., & Nurakhova, T. G. (1987). Synthesis and pharmacological activity of stereoisomeric derivatives of trans-decahydroquinoline. Pharmaceutical Chemistry Journal, 21, 247-252. https://doi.org/10.1007/BF00767390
Ganesh, M., & Mohankumar, M. (2017). Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography–mass spectrometry. Journal of Food Science and Technology, 54, 3082-3091. https://doi.org/10.1007/s13197-017-2744-z
Hall, I. H., Wongal, O. T., Reynoldsa, D. J., & Changb, J. J. (1992). The hypolipidemic effects of 2-Furoic Acid in sprague-dawley Rats. Arch Pharm: Chemistry in Life Sciences, 326(1), 15-23. https://doi.org/10.1002/ardp.19933260105
Hamdiani, S., Al-As’ari, M., Satriani, A. R., & Hadi, S. (2018). Alkaloids from Pulai (Alstonia scholaris (L.) R. Br.) Leaves of Lombok Island on the basis of GC-MS analysis. AIP Conference Proceedings, 2023, 020091. https://doi.org/10.1063/1.5064088
Hiap, W.-W., Wee, S.-L., Tan, K.-H., & Hee, A. K.-W. (2019). Phenylpropanoid sex pheromone component in hemolymph of male Carambola fruit fly, Bactrocera carambolae (Diptera: Tephritidae). Chemoecology, 29, 25-34. https://doi.org/10.1007/s00049-018-0273-5
Hou, Y., Cao, X., Wang, L., Cheng, B., Dong, L., Luo, X., Bai, G., & Gao, W. (2012). Microfractionation bioactivity-based ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry for the identification of nuclear factor-κB inhibitors and β2 adrenergic receptor agonists in an alkaloidal extract of the folk herb Alstonia scholaris. Journal of Chromatography B, 908, 98-104. https://doi.org/10.1016/j.jchromb.2012.10.004
Iqbal, A. A. M., Khan, F. A. K., & Khan, M. (2013a). Ethno-phyto-pharmacological overview on Rauwolfia tetraphylla L. International Journal of Pharmaceutical and Phytopharmacological Research, 2(4), 247-251.
Iqbal, A. A. M., Khan, F. A. K., Ansari, I., Quraishi, A., & Khan, M. (2013b). Ethno-Phyto-Pharmacological overview on Rauwolfia densiflora (Wall) Benth.ex Hook.f. International Journal of Pharmaceutical and Phytopharmacological Research, 2(5), 372-376.
Islam, M. S., & Lucky, R. A. (2019). Study on different plants of Apocynaceae family and their medicinal uses. Universal Journal of Pharmaceutical Research, 4(1), 40-44. https://doi.org/10.22270/ujpr.v4i1.235
Islam, M. T., Ali, E. S., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I., Shill, M. C., Karmakar, U. K., Yarla, N. S., Khan, I. N., Billah, M. M., Pieczynska, M. D., Zengin, G., Malainer, C., Nicoletti, F., Gulei, D., Berindan-Neagoe, I., Apostolov, A., Banach, M., ... Atanasov, A. G. (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology, 121, 82-94. https://doi.org/10.1016/j.fct.2018.08.032
Iwu, M. M., & Court, W. E. (1978). Leaf alkaloids of Rauwolfia cumminsii Stapf. Journal of Medicinal Plant and Natural Product Research, 33(4), 360-364. https://doi.org/10.1055/s-0028-1097392
Kumari, R., Rathi, B., Rani, A., & Bhatnagar, S. (2013). Rauvolfia serpentina L. Benth. ex Kurz.: Phytochemical, pharmacological and therapeutic aspects. International Journal of Pharmaceutical Sciences Review and Research, 23(2), 348-355.
Lei, H.-M., Wang, J.-T., Hu, Q.-Y., Li, C.-Q., Mo, M.-H., Zhang, K.-Q., Li, G.-H., & Zhao, P.-J. (2023). 2-Furoic acid associated with the infection of nematodes by Dactylellina haptotyla and its biocontrol potential on plant root-knot nematodes. Environmental Microbiology, 11(5), e01896-23. https://doi.org/10.1128/spectrum.01896-23
Meng, Y., & Miao, Y. (2010). Spiro[1,3-dioxolane-2,30-indolin]-20-one. Acta Crystallographica, 66(6), 1305. https://doi.org/10.1107/S1600536810016132
Menzies, J. R. W., Paterson, S. J., Duwiejua, M., & Corbett, A. D. (2010). Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). European Journal of Pharmacology, 350(1), 101-108. https://doi.org/10.1016/s0014-2999(98)00232-5
Merlin, F. P., Ratnasooriya, W. D., & Pathirana, R. N. (2020). Investigation of anti-inflammatory activity of Rauvolfia tetraphylla using in vitro protein denaturation assay. International Journal of Scientific and Research Publications, 10(5), 2250-3153. https://doi.org/10.29322/IJSRP.10.05.2020.p101114
Mohammed, A. E., Abdul-Hameed, Z. H., Alotaibi, M. O., Bawakid, N. O., Sobahi, T. R., Abdel-Lateff, A., & Alarif, W. M. (2021). Chemical diversity and bioactivities of monoterpene Indole alkaloids (MIAs) from Six Apocynaceae Genera. Molecules, 26(2), 488. https://doi.org/10.3390/molecules26020488
Muniyan, R., & Gurunathan, J. (2016). Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B. Pharmaceutical Biology, 54(12), 2814-2821. https://doi.org/10.1080/13880209.2016.1184691
Nair, V. D., Panneerselvam, R., & Gopi, R. (2012). Studies on methanolic extract of Rauvolfia species from Southern Western Ghats of India – In vitro antioxidant properties, characterisation of nutrients and phytochemicals. Industrial Crops and Products, 39, 17-25. https://doi.org/10.1016/j.indcrop.2012.02.006
Namjoshi, O. A., & Cook, J. M. (2016). Sarpagine and related alkaloids. The Alkaloids: Chemistry and Biology, 76, 63-169. https://doi.org/10.1016/bs.alkal.2015.08.002
Naz, R., Ayub, H., Nawaz, S., Islam, Z. U., Yasmin, T., Bano, A., Wakeel, A., Zia, S., & Roberts, T. H. (2017). Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complementary and Alternative Medicine, 17, 302. https://doi.org/10.1186/s12906-017-1815-z
Nazir, N. A. M. M., Abllah, Z., Jalaludin, A. A., Shahdan, I. A., & Manam, W. N. H. W. A. (2017). Virgin coconut oil and its antimicrobial properties against pathogenic microorganisms: A review. Advances in Health Sciences Research, 8, 192-199. https://doi.org/10.2991/idcsu-17.2018.51
Omar, F., Tareq, A. M., Alqahtani, A. M., Dhama, K., Sayeed, M. A., Emran, T. B., & Simal-Gandara, J. (2021). Plant-based indole alkaloids: A comprehensive overview from a pharmacological perspective. Molecules, 26(8), 2297. https://doi.org/10.3390/molecules26082297
Orienti, I., Zuccari, G., Bergamante, V., Fini, A., Carosio, R., & Montaldo, P. G. (2007). Enhancement of oleyl alcohol anti-tumor activity through complexation in polyvinyl alcohol amphiphilic derivatives. Drug Delivery, 14(4), 209-217. https://doi.org/10.1080/10717540601036898
Piccinin, E., Cariello, M., De Santis, S., Ducheix, S., Sabba, C., Ntambi, J. M., & Moschetta, A. (2019). Role of Oleic Acid in the gut-liver axis: From diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1). Nutrients, 11(10), 2283. https://doi.org/10.3390/nu11102283
Rahaman, M. M., Hassan, S. M. H., Martorell, M., Sharifi-Rad, J., & Islam, M. H. (2020). Ascorbic acid interaction with phytol: a modulatory effects on the anti-pyretic activity of paracetamol in Swiss albino mice. Clinical Phytoscience, 6, 54. https://doi.org/10.1186/s40816-020-00200-0
Rajopadhye, M., & Popp, F. D. (1988). Potential Anticonvulsants. 11. Synthesis and anticonvulsant activity of Spiro[ 1,3-dioxolane-2,3’-indolin]-2’-ones and structural analogues. Journal of Medicinal Chemistry, 31(5), 1001-1005. https://doi.org/10.1021/jm00400a018
Ramadhan, U. (2020). In vitro assessment of anti-inflammatory and COX-2 inhibitory action of some medicinal plants. Journal of Biological Research, 93(1), 69-71. https://doi.org/10.4081/jbr.2020.8723
Saha, M., & Bandyopadhyay, P. K. (2020). In vivo and in vitro antimicrobial activity of phytol, a diterpene molecule, isolated and characterized from Adhatoda vasica Nees. (Acanthaceae), to control severe bacterial disease of ornamental fish, Carassius auratus, caused by Bacillus licheniformis. Microbial Pathogenesis, 141, 103977. https://doi.org/10.1016/j.micpath.2020.103977
Sandhya, S., Talukdar, J., & Bhaishya, D. (2016). Chemical and Biological Properties of Lauric Acid: A review. International Journal of Advanced Research, 4(7), 1123-1128. https://doi.org/10.21474/IJAR01/952
Santos, C. C. M. P., Salvadori, M. S., Mota, V. G., Costa, L. M., de Almeida, A. A. C., de Oliveira, G. A. L., Costa, J. P., de Sousa, D. P., de Freitas, R. M., & de Almeida, R. N. (2013). Antinociceptive and antioxidant activities of Phytol In vivo and In vitro models. Neuroscience Journal, 2013, 949452. https://doi.org/10.1155/2013/949452
Shunmugapriya, K., & Kalavathy, U. (2012). GC-MS Analysis of bioactive constituents of Rauwolfia densiflora (wall) benth. ex hk.f. International Journal of Applied Biology and Pharmaceutical Technology, 3(1), 179-183.
Siswadi, S., & Saragih, G. S. (2021). Phytochemical analysis of Bioactive compounds in ethanolic extract of Sterculia quadrifida R.Br. AIP Conference Proceedings, 2353, 030098. https://doi.org/10.1063/5.0053057
Tyagi, T., & Agarwal, M. (2017). Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. Journal of Pharmacognosy and Phytochemistry, 6(1), 195-206.
Vaisanen, E. E., Smeds, A. I., Fagerstedt, K. V., Teeri, T. H., Willför, S. M., & Kärkönen, A. (2015). Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings. Planta, 242, 747-760. https://doi.org/10.1007/s00425-015-2348-7
Walker, M. C., & Gierse, J. K. (2010). In vitro assays for cyclooxygenase activity and inhibitor characterization. In S. S. Ayoub, R. J. Flower & M. P. Seed (Eds.), Cyclooxygenases: Methods and Protocols (Vol. 644, pp. 131-144) New Jersey, US: Humana Press. https://doi.org/10.1007/978-1-59745-364-6_11
Weerakoon, S. W., Arambewela, L. S. R., Premakumara, G. A. S., & Ratnasooriya, W. D. (1998). Sedative activity of the crude extract of Rauvolfia densiflora. Pharmaceutical Biology, 36(5), 360-361. https://doi.org/10.1076/phbi.36.5.360.4655
Wei, C.-C., Yen, P.-L., Chang, S.-T., Cheng, P.-L., Lo, Y.-C., & Liao, V. H.-C. (2016). Antioxidative activities of both Oleic Acid and Camellia tenuifolia Seed Oil are regulated by the transcription Factor DAF-16/FOXO in Caenorhabditis elegans. Plos One, 11(6), e0157195. https://doi.org/10.1371/journal.pone.0157195
Willie, P., Uyoh, E. A., & Aikpokpodion, P. O. (2021). Gas Chromatography-Mass Spectrometry (GC-MS) Assay of bioactive compounds and phytochemical analyses in three species of Apocynaceae. Pharmacognosy Journal, 13(2), 383-392. https://doi.org/10.5530/pj.2021.13.49
Wu, F., Kercmar, P., Zhang, C., & Stockigt, J. (2016). Sarpagan-Ajmalan-Type Indoles: Biosynthesis, structural Biology, and chemo-enzymatic significance. The Alkaloids: Chemistry and Biology, 76, 1-61. https://doi.org/10.1016/bs.alkal.2015.10.001
Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 1-18. https://doi.org/10.3390/molecules21050559
Zhan, G., Miao, R., Zhang, F., Hao, Y., Zhang, Y., Zhang, Y., Khurm, M., Zhang, X., & Guo, Z. (2020). Peraksine derivatives with potential anti-inflammatory activities from the stems of Rauvolfia vomitoria. Fitoterapia, 146, 104704. https://doi.org/10.1016/j.fitote.2020.104704
Published
How to Cite
Issue
Section
Copyright (c) 2024 P. Q. Sabin, T. P. Girija, A. Usman

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.