Assessment of genetic uniformity in micro propagated plantlets of turmeric (Curcuma longa L.) through DNA markers

Authors

  • M. R. Swamy Gowda Department of Botany, Yuvaraja’s College, University of Mysore, Mysuru-570005, Karnataka, India
  • R. Sowmya Department of Botany, Yuvaraja’s College, University of Mysore, Mysuru-570005, Karnataka, India

DOI:

https://doi.org/10.25081/cb.2024.v15.8936

Keywords:

Genetic uniformity, DNA markers, Micropropagation, Erode local

Abstract

Turmeric is herbaceous plant, characterized by long lance-shaped leaves sprouting from its rhizomatous underground stem. Notably, its rhizomes contain the bioactive compounds curcuminoids, renowned for its medicinal and culinary significance. However, meeting the surging demand for turmeric, particularly during off- seasons, presents a formidable challenge due to the sluggish vegetative propagation rate in Curcuma longa. Given the scarcity of sexual reproduction in turmeric, micropropagation emerges as the convenient method for obtaining disease-free seeds. In addressing the challenge of direct regeneration of the native Erode local cultivar of turmeric, this study endeavors to establish a protocol for in vitro plantlet production. Results indicate that multiple shoots were successfully induced, notably with 13.32 μM of 6-benzylaminopurine (BAP), yielding a response rate of 73.2±4.7% and an average shoot count of 6.95±0.81 per explant. Subsequently, a concentration of 17.76 μM of BAP demonstrated a response rate of 56.5%±4.7%, with an average shoot count of 5.94±0.81 per explant. Additionally, a combination of 13.32 μM BAP and 2.68 μM Naphthaleneacetic acid (NAA) resulted in 8.65±0.47 shoots per explant, with a response rate of 73.66±1.25%. Similarly, 13.32 μM BAP combined with 5.37 μM NAA yielded 7.32±0.47 shoots per explant, with a response rate of 72.33±0.47%. The acclimatization of plantlets in a greenhouse exhibited a remarkable survival rate, ranging from 90% to 98%. Importantly, all regenerated plantlets closely resembled the mother plants morphologically. Genetic uniformity assessment, employing 10 ISSR and 4 DAMD markers, indicated more than 90% uniformity among one mother plant and regenerants. This indicates a significant genetic uniformity, ensuring consistency in desired traits across the regenerated plantlets.

Downloads

Download data is not yet available.

References

Ahmed, M. R., Anis, M., Alatar, A. A., & Faisal, M. (2017). In vitro clonal propagation and evaluation of genetic fidelity using RAPD and ISSR marker in micropropagated plants of Cassia alata L.: A potential medicinal plant. Agroforestry Systems, 91, 637-647. https://doi.org/10.1007/s10457-016-9992-1

Bejoy, M., Dan, M., Anish, N. P., Nair, A. R. G., Radhika, B. J., & Manesh, K. (2012). Micropropagation of an Indian ginger (Curcuma vamana Sabu and Mangaly): A wild relative of turmeric. Biotechnology, 11(6), 333-338. https://doi.org/10.3923/biotech.2012.333.338

Bennici, A., Anzidei, M., & Vendramin, G. G. (2004). Genetic stability and uniformity of Foeniculum vulgare Mill. regenerated plants through organogenesis and somatic embryogenesis. Plant Science, 166(1), 221-227. https://doi.org/10.1016/j.plantsci.2003.09.010

Bhojwani, S. S., & Razdan, M. K. (1986). Plant Tissue Culture: Theory and Practice. (1st ed.). Cham, Switzerland: Elsevier.

Chavan, J. J., Gaikwad, N. B., Kshirsagar, P. R., Umdale, S. D., Bhat, K. V., Dixit, G. B., & Yadav, S. R. (2013). Highly efficient in vitro proliferation and genetic stability analysis of micropropagated Ceropegiaevansii by RAPD and ISSR markers: A critically endangered plant of Western Ghats. Plant Biosystems, 149(2), 442-450. https://doi.org/10.1080/11263504.2013.853700

Cui, Y., Deng, Y., Zhen, K., Hu, X., Zhu, M., Deng, X., & Xi, R. (2019). An efficient micropropagation protocol for an endangered ornamental tree species (Magnolia sirindhorniae Noot. & Chalermglin) and assessment of genetic uniformity through DNA markers. Scientific Reports, 9, 9634. https://doi.org/10.1038/s41598-019-46050-w

Downham, A., & Collins, P. (2000). Coloring our foods in the last and next millennium. International Journal of Food Science & Technology, 35(1), 5-22. https://doi.org/10.1046/j.1365-2621.2000.00373.x

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.

Gomathy, V., Anbazhagan, M., & Arumugam, K. (2014). In vitro propagation of Curcuma longa (turmeric). International Journal of Research in Plant Science, 4, 30-33.

He, R., & Gang, D. R. (2014). Somatic embryogenesis and Agrobacterium-mediated transformation of turmeric (Curcuma longa). Plant Cell, Tissue and Organ Culture, 116, 333-342. https://doi.org/10.1007/s11240-013-0407-y

Manokari, M., Priyadharshini, S., Jogam, P., & Shekhawat, M. S. (2020). Application of seismo-mechanical stress in attenuation of in vitro induced abnormalities in Scaevola taccada (Gaertn.) Roxb. Biocatalysis and Agricultural Biotechnology, 29, 101821. https://doi.org/10.1016/j.bcab.2020.101821

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Muthukumar, M., Muthukrishnan, S., Kumar, T. S., & Rao, M. V. (2020). Direct regeneration, microshoot recovery and assessment of genetic fidelity in Helicteres isora L., a medicinally important tree. Biocatalysis and Agricultural Biotechnology, 23, 101415. https://doi.org/10.1016/j.bcab.2019.101415

Nair, K. P. (2019). Turmeric (Curcuma longa L.) and ginger (Zingiber officinale Rosc.) - World’s invaluable medicinal spices. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-29189-1

Pittampalli, B., Jogam, P., Thampu, R. K., Abbagani, S., & Peddaboina, V. (2022). High frequency plant regeneration and genetic homogeneity assessment of regenerants by molecular markers in turmeric (Curcuma longa L.). In Vitro Cellular & Developmental Biology-Plant, 58, 169-180. https://doi.org/10.1007/s11627-021-10226-9

Prathanturarug, S., Chuakul, W., Phaidee, Y., Saralamp, P., & Soonthornchareonnon, N. (2003). High-frequency shoot multiplication in Curcuma longa L. using thidiazuron. Plant Cell Reports, 21, 1054–1059. https://doi.org/10.1007/s00299-003-0629-2

Priyadharshini, S., Kannan, N., Manokari, M., & Shekhawat, M. S. (2020). In vitro regeneration using twin scales for restoration of critically endangered aquatic plant Crinum malabaricum Lekhak & Yadav: A promising source of galanthamine. Plant Cell, Tissue and Organ Culture, 141, 593-604. https://doi.org/10.1007/s11240-020-01818-1

Raju, C. S., Aslam, A., & Shajahan, A. (2015). High-efficiency direct somatic embryogenesis and plant regeneration from leaf base explants of turmeric (Curcuma longa L.). Plant Cell, Tissue and Organ Culture, 122, 79-87. https://doi.org/10.1007/s11240-015-0751-1

Ravindran, P. N., Babu, K., & Sivaraman, K. (2007). Botany and crop improvement of turmeric. In P. N. Ravindran, K. Nirmal Babu, & K. Sivaraman (Eds.), Turmeric: The Genus Curcuma (pp. 15-70) Florida, US: CRC Press. https://doi.org/10.1201/9781420006322

Rohela, G. K., Jogam, P., Bylla, P., & Reuben, C. (2019). Indirect regeneration and assessment of genetic fidelity of acclimated plantlets by SCoT, ISSR and RAPD markers in Rauwolfia tetraphylla L.: An endangered medicinal plant. BioMed Research International, 2019, 3698742. https://doi.org/10.1155/2019/3698742

Rohela, G. K., Jogam, P., Mir, M. Y., Shabnam, A. A., Shukla, P., Abbagani, S., & Kamili, A. N. (2020). Indirect regeneration and genetic fidelity analysis of acclimated plantlets through SCoT and ISSR markers in Morus alba L. cv. Chinese white. Biotechnology Reports, 25, e00417. https://doi.org/10.1016/j.btre.2020.e00417

Sadhu, S. K., Jogam, P., Thampu, R. K., Abbagani, S., Penna, S., & Peddaboina, V. (2020). High efficiency plant regeneration and genetic fidelity of regenerants by SCoT and ISSR markers in chickpea (Cicer arietinum L.). Plant Cell, Tissue and Organ Culture, 141, 465-477. https://doi.org/10.1007/s11240-020-01804-7

Salvi, N. D., George, L., & Eapen, S. (2002). Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell, Tissue and Organ Culture, 68, 143-151. https://doi.org/10.1023/A:1013889119887

Sarma, I., Deka, A. C., Sarma, S., & Sarma, T. C. (2011). High frequency clonal propagation and micro rhizome induction of Curcuma longa L. (cv Lakadong) - a rich source of curcumin of Northeast India. The BioScan, 6, 11-18. https://doi.org/10.13140/RG.2.1.5136.8167

Sigrist, M. S., Pinheiro, J. B., Filho, J. A. A., & Zucchi, M. I. (2011). Genetic diversity of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by microsatellite markers. Genetics and Molecular Research, 10(1), 419-428. https://doi.org/10.4238/vol10-1gmr1047

Singh, T. J., Patel, R. K., Patel, S. N., & Patel, P. A. (2018). Molecular Diversity Analysis in Turmeric (Curcuma longa L.) Using SSR Markers. International Journal of Current Microbiology and Applied Sciences, 7(11), 552-560. https://doi.org/10.20546/ijcmas.2018.711.066

Thakur, J., Dwivedi, M. D., Sourabh, P., Uniyal, P. L., & Pandey, A. K. (2016). Genetic homogeneity revealed using SCoT, ISSR and RAPD markers in micropropagated Pittosporum eriocarpum Roylean endemic and endangered medicinal plant. PLoS One, 11(7), e0159050. https://doi.org/10.1371/journal.pone.0159050

Thingbaijam, D. S., Khumallambam, D. D., Kshetrimayum, P., Chongtham, H. S., Shagolsem, B. S., Chingakham, B. S., & Huidrom, S. D. (2012). Silver nitrate and different culture vessels influence high frequency microrhizome induction in vitro and enhancement growth of turmeric plantlet during ex vitro acclimatization. Notulae Scientia Biologicae, 4(4), 67-78. https://doi.org/10.15835/nsb448255

Tikendra, L., Koijam, A. S., & Nongdam, P. (2019). Molecular markers based genetic fidelity assessment of micropropagated Dendrobium chrysotoxum Lindl. Meta Gene, 20, 100562. https://doi.org/10.1016/j.mgene.2019.100562

Tyagi, R. K., Agrawal, A., Dua, P., & Yusuf, A. (2004). In vitro plant regeneration and genotype conservation of eight wild species of Curcuma. Biologia Plantarum, 48, 129-132. https://doi.org/10.1023/B:BIOP.0000024289.68669.ef

Zhang, A., Wang, H., Shao, Q., Xu, M., Zhang, W., & Li, M. (2015). Large scale in vitro propagation of Anoectochilus roxburghii for commercial application: Pharmaceutically important and ornamental plant. Industrial Crops and Products, 70, 158-162. https://doi.org/10.1016/j.indcrop.2015.03.032

Zuraida, A. R. (2013). Improved in vitro propagation of Curcuma caesia, a valuable medicinal plant. Journal of Tropical Agriculture and Food Science, 41, 273-281.

Published

12-07-2024

How to Cite

Gowda, M. R. S., & Sowmya, R. (2024). Assessment of genetic uniformity in micro propagated plantlets of turmeric (Curcuma longa L.) through DNA markers. Current Botany, 15, 98–103. https://doi.org/10.25081/cb.2024.v15.8936

Issue

Section

Regular Articles