Multi-target therapeutic interventions based on phytochemicals for SARS-CoV-2

Authors

  • Kunika Saini Computational Chemistry Research Laboratory, Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
  • Smriti Sharma Computational Chemistry Research Laboratory, Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
  • Vinayak Bhatia ICARE Eye Hospital and Postgraduate Institute, Noida-201301, Uttar Pradesh, India
  • Sheza Zaidi Department of Chemistry, Kirorimal College, University of Delhi, Delhi-110007, India
  • Jayesh Dhalani Department of Chemistry, School of Science, RK University, Rajkot-360020, Gujarat, India

DOI:

https://doi.org/10.25081/cb.2025.v16.8634

Keywords:

Coronavirus, Phytochemicals, Medicinal plants, Ayurveda

Abstract

COVID-19 has an unprecedented effect on every aspect of human existence. The chief targets for drug design against SARS-CoV-2 are, spike envelope glycoprotein (S), the viral main proteinase Mpro, also referred to as 3CLpro, Angiotensin-converting enzyme 2 (ACE-2), and RNA-dependent RNA polymerase (RdRp). A systematic literature survey was performed extensively from various published sources and peer-reviewed electronic databases such as PubMed, Scielo, Google Scholar, and Science Direct databases to obtain peer-reviewed studies on the chief targets for drug design against SARS-CoV-2 and phytochemicals. Of the 1012 titles identified by the search, 151 were adequate according to the inclusion and exclusion criteria. The promising antibacterial, antioxidant, anti-inflammatory, and antiviral activities of phytochemicals make them an attractive option for drug discovery against SARS-CoV-2. In the quest for finding drug molecules against these targets, ethno-medicinal knowledge is also being explored. In this review, the authors have deduced the available phytochemicals with reported anti-CoV activity. In addition to that, the authors have also briefly thrown light on the etiologic and existing drug targets for SARS-CoV-2. Authors conclude that a multi-target treatment strategy would be the most useful approach against SARS-CoV-2 and phytochemicals can prove to be the gold mine for designing such drugs.

Downloads

Download data is not yet available.

References

Abdullahi, Y., Uthman, U., Shanono, U., Okechukwu, U., Nkechi, O., & Egbe, E. (2025). Molecular docking of SARS ‑ CoV ‑ 2 surface proteins with some active metabolites from plants used in the therapy of common cold : potential drug identifcation. Journal of Umm Al-Qura University for Applied Sciences, 2025, 1-16. https://doi.org/10.1007/s43994-025-00237-2

Adelusi, T. I., Oyedele, A.-Q. K., Monday, O. E., Boyenle, I. D., Idris, M. O., Ogunlana, A. T., Ayoola, A. M., Fatoki, J. O., Kolawole, O. E., David, K. B., & Olayemi, A. A. (2022). Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations. Journal of Molecular Structure, 1250, 131879. https://doi.org/10.1016/j.molstruc.2021.131879

Afifi, A., Ayoub, M., Kutkat, O., GabAllah, M., & Mohammed, R. (2025). Profiling the phytochemicals and anti-SARS CoV-2 activity of different Ligustrum ovalifolium Hassk aerial part extracts: An in vitro-in silico study. Egyptian Journal of Chemistry, 68(3), 409-433. https://doi.org/10.21608/ejchem.2024.296342.9836

Ahmad, M., Butt, M. A., Zhang, G., Sultana, S., Tariq, A., & Zafar, M. (2018). Bergenia ciliata: A comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. Biomedicine & Pharmacotherapy, 97, 708-721. https://doi.org/10.1016/j.biopha.2017.10.141

Ahmad, S., Zahiruddin, S., Parveen, B., Basist, P., Parveen, A., Gaurav, Parveen, R., & Ahmad, M. (2021). Indian Medicinal Plants and Formulations and Their Potential Against COVID-19–Preclinical and Clinical Research. Frontiers in Pharmacology, 11, 578970. https://doi.org/10.3389/fphar.2020.578970

Ahmed, M. N., Jahan, R., Nissapatorn, V., Wilairatana, P., & Rahmatullah, M. (2022). Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomedicine & Pharmacotherapy, 146, 112507. https://doi.org/10.1016/j.biopha.2021.112507

Alamri, M. A., Altharawi, A., Alabbas, A. B., Alossaimi, M. A., & Alqahtani, S. M. (2020). Structure-based virtual screening and molecular dynamics of phytochemicals derived from Saudi medicinal plants to identify potential COVID-19 therapeutics. Arabian Journal of Chemistry, 13(9), 7224-7234. https://doi.org/10.1016/j.arabjc.2020.08.004

Al-kuraishy, H. M., Al-Gareeb, A. I., & El-Saber Batiha, G. (2022). The possible role of Ursolic acid in Covid-19: A real game changer. Clinical Nutrition ESPEN, 47, 414-417. https://doi.org/10.1016/j.clnesp.2021.12.030

Alsuhaibani, S., & Khan, M. A. (2017). Immune-stimulatory and therapeutic activity of tinospora cordifolia: Double-edged sword against salmonellosis. Journal of Immunology Research, 2017, 1787803. https://doi.org/10.1155/2017/1787803

Andersen, K. G., Rambaut, A., lan Lipkin, W., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450-452. https://doi.org/10.1038/s41591-020-0820-9

Anhê, F. F., Desjardins, Y., Pilon, G., Dudonné, S., Genovese, M. I., Lajolo, F. M., & Marette, A. (2013). Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition, 1(4), 105-114. https://doi.org/10.1016/j.phanu.2013.07.004

Asante, D.-B., Henneh, I. T., Acheampong, D. O., Kyei, F., Adokoh, C. K., Ofori, E. G., Domey, N. K., Adakudugu, E., Tangella, L. P., & Ameyaw, E. O. (2019). Anti-inflammatory, anti-nociceptive and antipyretic activity of young and old leaves of Vernonia amygdalina. Biomedicine and Pharmacotherapy, 111, 1187-1203. https://doi.org/10.1016/j.biopha.2018.12.147

Awasthi, M., Singh, S., Pandey, V. P., & Dwivedi, U. N. (2016). Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. Journal of the Neurological Sciences, 361, 256-271. https://doi.org/10.1016/j.jns.2016.01.008

Balasubramanian, G., Sarathi, M., Kumar, S. R., & Hameed, A. S. S. (2007). Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp. Aquaculture, 263(1-4), 15-19. https://doi.org/10.1016/j.aquaculture.2006.09.037

Bano, S., Singh, J., Zehra, Z., Sulaimani, M. N., Mohammad, T., Yumlembam, S., Hassan, M. I., Islam, A., & Dey, S. K. (2025). Biochemical Screening of Phytochemicals and Identification of Scopoletin as a Potential Inhibitor of SARS-CoV-2 Mpro, Revealing Its Biophysical Impact on Structural Stability. Viruses, 17(3), 402. https://doi.org/10.3390/v17030402

Barkat, M. A., Kaushik, P., Barkat, H. A., Khan, M. I., & Hadi, H. A. (2022). Phytoconstituents in the Management of Covid-19: Demystifying the Fact. Drug Research, 72(3), 123-130. https://doi.org/10.1055/a-1697-5365

Bhalla, G., Kaur, S., Kaur, J., Kaur, R., & Raina, P. (2017). Antileishmanial and immunomodulatory potential of Ocimum sanctum Linn. and Cocos nucifera Linn. in murine visceral leishmaniasis. Journal of Parasitic Diseases, 41, 76-85. https://doi.org/10.1007/s12639-016-0753-x

Bharathi, M., Sivamaruthi, B. S., Kesika, P., Thangaleela, S., & Chaiyasut, C. (2022). In Silico Screening of Potential Phytocompounds from Several Herbs against SARS-CoV-2 Indian Delta Variant B.1.617.2 to Inhibit the Spike Glycoprotein Trimer. Applied Sciences, 12(2), 665. https://doi.org/10.3390/app12020665

Bhattacharya, S., & Paul, S. M. N. (2021). Efficacy of phytochemicals as immunomodulators in managing COVID-19: a comprehensive view. VirusDisease, 32, 435-445. https://doi.org/10.1007/s13337-021-00706-2

Boukhatem, M. N., & Setzer, W. N. (2020). Aromatic Herbs, Medicinal Plant-Derived Essential Oils , and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives. Plants, 9(6), 800. https://doi.org/10.3390/plants9060800

Cayona, R., & Creencia, E. (2021). Phytochemical Mining of Potential SARS-CoV-2 Main Protease Inhibitors from Phytochemical Mining of Potential SARS-CoV-2 Main Protease Inhibitors from Blumea balsamifera (L.) DC. Philippine Journal of Science, 151(1), 235-261.

Chang, J. S., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology, 145(1), 146-151. https://doi.org/10.1016/j.jep.2012.10.043

Chen, J., Wang, Y., Gao, Y., Hu, L.-S., Yang, J., Wang, J., Sun ,W., Liang, Z., Cao, Y., Cao, Y. (2020). Protection against COVID-19 injury by qingfei paidu decoction via anti- viral, anti-inflammatory activity and metabolic programming. Biomedicine & Pharmacotherapy Journal, 129, 110281. https://doi.org/10.1016/j.biopha.2020.110281

Choudhary, N., & Singh, V. (2022). Multi-scale mechanism of antiviral drug-alike phytoligands from Ayurveda in managing COVID-19 and associated metabolic comorbidities: insights from network pharmacology. Molecular Diversity, 26, 2575-2594. https://doi.org/10.1007/s11030-021-10352-x

Cohen, M. M. (2014). Tulsi - Ocimum sanctum: A herb for all reasons. Journal of Ayurveda and Integrative Medicine, 5(4), 251-259. https://doi.org/10.4103/0975-9476.146554

Dali, Y., Abbasi, S. M., Khan, S. A. F., Larra, S. A., Rasool, R., Ain, Q. T., & Jafar, T. H. (2019). Computational drug design and exploration of potent phytochemicals against cancer through in silico approaches. Biomedical Letters, 5(1), 21-26.

Davinelli, S., Sapere, N., Zella, D., Bracale, R., Intrieri, M., & Scapagnini, G. (2012). Pleiotropic Protective Effects of Phytochemicals in Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2012, 386527. https://doi.org/10.1155/2012/386527

Devaux, C. A., Rolain, J.-M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5). https://doi.org/10.1016/j.ijantimicag.2020.105938

Devi, M. S. S., Sathiyarajeswaran, P., Kumar, D. T., Kumar, S. U., Siva, R., Doss, G. P., & Kanakavalli, K. (2022). Siddha Medicine and Computer Modeling: A Treasure for SARS-CoV-2 Treatment. In A. T. Azar & A. E. Hassanien (Eds.), Modeling, Control and Drug Development for COVID-19 Outbreak Prevention (Vol. 366, pp. 521-541) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-72834-2_15

Dey, L., Chakraborty, S., & Mukhopadhyay, A. (2020). Machine learning techniques for sequence-based prediction of viral–host interactions between SARS-CoV-2 and human proteins. Biomedical Journal, 43(5), 438-450. https://doi.org/10.1016/j.bj.2020.08.003

Dutta, S., Pushan, S. S., Ghosh, R., Jose, M., & Pritam, M. (2025). In silico Study of Antiviral Phytochemicals for the Potential Drug Development Against Wild-type and Omicron Variants of SARS-CoV-2. Current Pharmaceutical Biotechnology, 10, 1-20. https://doi.org/10.2174/0113892010251819241120050831

Ebenezer, O., Bodede, O., Awolade, P., Jordaan, M. A., Ogunsakin, R. E., & Shapi, M. (2022). Medicinal plants with anti-SARS-CoV activity repurposing for treatment of COVID-19 infection: A systematic review and meta-analysis. Acta Pharmaceutica, 72(2), 199-224. https://doi.org/10.2478/acph-2022-0021

Eng, Y. S., Lee, C. H., Lee, W. C., Huang, C. C., & Chang, J. S. (2019). Unraveling the molecular mechanism of traditional Chinese medicine: Formulas against acute airway viral infections as examples. Molecules, 24(19), 3505. https://doi.org/10.3390/molecules24193505

Fraser, E. (2020). Long term respiratory complications of covid-19. British Medical Journal, 2020, 370. https://doi.org/10.1136/bmj.m3001

George, A., Suzuki, N., Abas, A. B., Mohri, K., Utsuyama, M., Hirokawa, K., & Takara, T. (2016). Immunomodulation in middle-aged humans via the ingestion of Physta® standardized root water extract of Eurycoma longifolia Jack - A randomized, double-blind, placebo-controlled, parallel study. Phytotherapy Research, 30(4), 627-635. https://doi.org/10.1002/ptr.5571

Gerlach, S. L., Chandra, P. K., Roy, U., Gunasekera, S., Göransson, U., Wimley, W. C., Braun, S. E., & Mondal, D. (2019). The Membrane-Active Phytopeptide Cycloviolacin O2 Simultaneously Targets HIV-1-infected Cells and Infectious Viral Particles to Potentiate the Efficacy of Antiretroviral Drugs. Medicines, 6(1), 33. https://doi.org/10.3390/medicines6010033

Ghanimi, R., Ouhammou, A., Atki, Y. E., & Cherkaoui, M. (2022). Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco. Journal of Pharmacy & Pharmacognosy Research, 10(1), 227-238. https://doi.org/10.56499/jppres21.1200_10.2.227

Ghoke, S. S., Sood, R., Kumar, N., Pateriya, A. K., Bhatia, S., Mishra, A., Dixit, R., Singh, V. K., Desai, D. N., Kulkarni, D. D., Dimri, U., & Singh, V. P. (2018). Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complementary and Alternative Medicine, 18, 174. https://doi.org/10.1186/s12906-018-2238-1

Gorlenko, C. L., Kiselev, H. Y., Budanova, E. V., Zamyatnin, A. A., & Ikryannikova, L. N. (2020). Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics? Antibiotics, 9(4), 170. https://doi.org/10.3390/antibiotics9040170

Gowrishankar, S., Muthumanickam, S., Kamaladevi, A., Karthika, C., Jothi, R., Boomi, P., Maniazhagu, D., & Pandian, S. K. (2021). Promising phytochemicals of traditional Indian herbal steam inhalation therapy to combat COVID-19 – An in silico study. Food and Chemical Toxicology, 148, 111966. https://doi.org/10.1016/j.fct.2020.111966

Gurung, A. B., Ali, M. A., Al-Hemaid, F., El-Zaidy, M., & Lee, J. (2022). In silico analyses of major active constituents of fingerroot (Boesenbergia rotunda) unveils inhibitory activities against SARS-CoV-2 main protease enzyme. Saudi Journal of Biological Sciences, 29(1), 65-74. https://doi.org/10.1016/j.sjbs.2021.11.053

Harrison, C. (2020). Coronavirus puts drug repurposing on the fast track. Nature Biotechnology, 38, 379-381. https://doi.org/10.1038/d41587-020-00003-1

Harrison, S. L., Fazio-Eynullayeva, E., Lane, D. A., Underhill, P., & Lip, G. Y. H. (2020). Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLoS Medicine, 17(9), e1003321. https://doi.org/10.1371/journal.pmed.1003321

Hasan, A., Al Mahamud, R., Jannat, K., & Bondhon, T. A., Farzana, B., Fariba, M. H., Jahan, R., & Rahmatullah, M. (2020). Phytochemicals from Solanum surattense Burm. f. have high binding affinities for C-3 like main protease of COVID-19 (SARS-CoV-2). Journal of Medicinal Plants Studies, 8(4), 20-26.

Hasan, A., Biswas, P., Bondhon, T. A., Jannat, K., Paul, T. K., Paul, A. K., Jahan, R., Nissapatorn, V., Mahboob, T., Wilairatana, P., Hasan, M. N., de Lourdes Pereira, M., Wiart, C., & Rahmatullah, M. (2022). Can Artemisia herba-alba Be Useful for Managing COVID-19 and Comorbidities? Molecules, 27(2), 492. https://doi.org/10.3390/molecules27020492

Hasan, A., Jannat, K., Bondhon, T. A., Jahan, R., Hossan, M. S., de Lourdes Pereira, M., Nissapatorn, V., Wiart, C., & Rahmatullah, M. (2021). Can Antimalarial Phytochemicals be a Possible Cure for COVID-19? Molecular Docking Studies of Some Phytochemicals to SARS-CoV-2 3C-like Protease. Infectious Disorders - Drug Targets, 21(1), e290721195143. https://doi.org/10.2174/1871526521666210729164054

Hussain, I., Hussain, A., Alajmi, M. F., Rehman, M. T., & Amir, S. (2021). Impact of repurposed drugs on the symptomatic COVID-19 patients. Journal of Infection and Public Health, 14(1), 24-38. https://doi.org/10.1016/j.jiph.2020.11.009

Idrees, M., Khan, S., Memon, N. H., & Zhang, Z. (2021). Effect of the Phytochemical Agents against the SARS-CoV and Some of them Selected for Application to COVID-19: A Mini-Review. Current Pharmaceutical Biotechnology, 22(4), 444-450.

Jahan, R., Paul, A. K., Bondhon, T. A., Hasan, A., Jannat, K., Mahboob, T., Nissapatorn, V., Pereira, M. de L., Wiart, C., Wilairatana, P., & Rahmatullah, M. (2021). Zingiber officinale: Ayurvedic Uses of the Plant and In Silico Binding Studies of Selected Phytochemicals With Mpro of SARS-CoV-2. Natural Product Communications, 16(10), 1-13. https://doi.org/10.1177/1934578X211031766

Janlou, M. A. M., Sahebjamee, H., Alaie, H. R., & Heidari, M. (2025). A Virtual Study on the Active Ingredients of Zingiber officinale and Boswellia serrata as Potential Natural Inhibitors of SARS-COV-2 Main Protease Enzyme. Journal of Medicinal Plants and By-Products, 14(2), 137-148. https://doi.org/10.22034/jmpb.2024.365268.1670

Jannat, K., Hasan, A., Al Mahamud, R., Jahan, R., Bondhon, T. A., Rahmatullah, M., Farzana, B., & Rahmatullah, M. (2020). In silico screening of Vigna radiata and Vigna mungo phytochemicals for their binding affinity to SARS-CoV-2 (COVID-19) main protease (3CLpro). Journal of Medicinal Plants Studies, 8(4), 89-95.

Jia, W., Wang, C., Wang, Y., Pan, G., Jiang, M., Li, Z., & Zhu, Y. (2015). Qualitative and quantitative analysis of the major constituents in Chinese medical preparation lianhua-qingwen capsule by UPLC-DAD-QTOF-MS. The Scientific World Journal, 2015, 731765. https://doi.org/10.1155/2015/731765

Jin, J. H., Lee, D.-U., Kim, Y. S., & Kim, H. P. (2011). Anti-allergic activity of sesquiterpenes from the rhizomes of Cyperus rotundus. Archives of Pharmacal Research, 34, 223-228. https://doi.org/10.1007/s12272-011-0207-z

Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145-151. https://doi.org/10.1080/14756366.2019.1690480

Joshi, G., Sindhu, J., Thakur, S., Rana, A., Sharma, G., Mayank, & Poduri, R. (2021). Recent efforts for drug identification from phytochemicals against SARS-CoV-2: Exploration of the chemical space to identify druggable leads. Food and Chemical Toxicology, 152, 112160. https://doi.org/10.1016/j.fct.2021.112160

Kakkar, R., & Sharma, S. (2011). DFT study of interactions of carbenes with boron nitride nanotubes. Chemistry Journal, 1(1), 9-20.

Kamat, S., & Kumari, M. (2021). Repurposing Chloroquine Against Multiple Diseases With Special Attention to SARS-CoV-2 and Associated Toxicity. Frontiers in Pharmacology, 12, 576093. https://doi.org/10.3389/fphar.2021.576093

Kolifarhood, G., Aghaali, M., Saadati, H. M., Taherpour, N., Rahimi, S., Izadi, N., & Nazari, S. S. H. (2020). Epidemiological and Clinical Aspects of COVID-19; a Narrative Review. Archives of Academic Emergency Medicine, 8(1), e41.

Koulgi, S., Jani, V., Uppuladinne, M., Sonavane, U., Nath, A. K., Darbari, H., & Joshi, R. (2021). Drug repurposing studies targeting SARS-CoV-2: an ensemble docking approach on drug target 3C-like protease (3CLpro). Journal of Biomolecular Structure and Dynamics, 39(15), 5735-5755. https://doi.org/10.1080/07391102.2020.1792344

Kumar, S., Kashyap, P., Chowdhury, S., Kumar, S., Panwar, A., & Kumar, A. (2021). Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine, 85, 153317. https://doi.org/10.1016/j.phymed.2020.153317

Kumar, S., Paul, P., Yadav, P., Kaul, R., Maitra, S. S., Jha, S. K., & Chaari, A. (2022). A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Computers in Biology and Medicine, 142, 105231. https://doi.org/10.1016/j.compbiomed.2022.105231

Lai, W.-L., Chuang, H.-S., Lee, M.-H., Wei, C.-L., Lin, C.-F., & Tsai, Y.-C. (2012). Inhibition of herpes simplex virus type 1 by thymol-related mono-terpenoids. Planta Medica, 78(15), 1636-1638. https://doi.org/10.1055/s-0032-1315208

Lampariello, L. R., Cortelazzo, A., Guerranti, R., Sticozzi, C., & Valacchi, G. (2012). The magic velvet bean of mucuna pruriens. Journal of Traditional and Complementary Medicine, 2(4), 331-339. https://doi.org/10.1016/S2225-4110(16)30119-5

Lee, D. Y. W., Li, Q. Y., Liu, J., & Efferth, T. (2021). Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine, 80, 153337. https://doi.org/10.1016/j.phymed.2020.153337

Li, L., Ma, L., Hu, Y., Li, X., Yu, M., Shang, H., & Zou, Z. (2022). Natural biflavones are potent inhibitors against SARS-CoV-2 papain-like protease. Phytochemistry, 193, 112984. https://doi.org/10.1016/j.phytochem.2021.112984

Lim, X. Y., Teh, B. P., & Tan, T. Y. C. (2021). Medicinal Plants in COVID-19: Potential and Limitations. Frontiers in Pharmacology, 12, 611408. https://doi.org/10.3389/fphar.2021.611408

Lin, Y., Chiang, C.-Y., Shibu, M. A., Su, S.-H., Dass, K. T. P., Lin, P., Lin, S.-Z., Ho, T.-J., Kuo, W.-W., & Huang, C.-Y. (2022). Novel Herbal Formulation Jing Si Exhibits Multiple Functions to Inhibit Replication Activity and Subsides Viral Load of COVID-19 Variants. Research Square, 1-16. https://doi.org/10.21203/rs.3.rs-1122886/v1

Liu, A.-L., & Du, G.-H. (2012). Antiviral Properties of Phytochemicals. In A. K. Patra (Eds), Dietary Phytochemicals and Microbes (pp. 93-126) Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-007-3926-0_3

Liu, Z., Li, X., Gou, C., Li, L., Luo, X., Zhang, C., Zhang, Y., Zhang, J., Jin, A., Li, H., Zeng, Y., Li, T., & Wang, X. (2020). Effect of Jinhua Qinggan granules on novel coronavirus pneumonia in patients. Journal of Traditional Chinese Medicine, 40(3), 467-472. https://doi.org/10.19852/j.cnki.jtcm.2020.03.016

Loizzo, M. R., Saab, A. M., Tundis, R., Statti, G. A., Menichimi, F., Lampronti, I., Gambari, R., Cinatl, J., & Doerr, H. W. (2008). Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chemistry and Biodiversity, 5(3), 461-470. https://doi.org/10.1002/cbdv.200890045

Luo, E., Zhang, D., Luo, H., Liu, B., Zhao, K., Zhao, Y., Bian, Y., & Wang, Y. (2020). Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19): An empirical study from Wuhan, Hubei Province, China. Chinese Medicine, 15, 34. https://doi.org/10.1186/s13020-020-00317-x

Majeed, A., Hussain, W., Yasmin, F., Akhtar, A., & Rasool, N. (2021). Virtual Screening of Phytochemicals by Targeting HR1 Domain of SARS-CoV-2 S Protein: Molecular Docking, Molecular Dynamics Simulations, and DFT Studies. BioMed Research International, 2021, 6661191. https://doi.org/10.1155/2021/6661191

Majnooni, M. B., Fakhri, S., Bahrami, G., Naseri, M., Farzaei, M. H., & Echeverría, J. (2021). Alkaloids as Potential Phytochemicals against SARS-CoV-2: Approaches to the Associated Pivotal Mechanisms. Evidence-Based Complementary and Alternative Medicine, 2021, 6632623. https://doi.org/10.1155/2021/6632623

Malekmohammad, K., & Rafieian-Kopaei, M. (2021). Mechanistic Aspects of Medicinal Plants and Secondary Metabolites against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Current Pharmaceutical Design, 27(38), 3996-4007. https://doi.org/10.2174/1381612827666210705160130

Maurya, D. K. (2020). Evaluation of Yashtimadhu (Glycyrrhiza glabra) active Phytochemicals Against Novel Coronavirus (SARS-CoV-2). Research Square, 1-18. https://doi.org/10.21203/rs.3.rs-26480/v1

Milugo, T. K., Owuor, B., Okanya, P. W., Chepukosi, K., & Obiero, G. F. (2025). Natural compounds from ethno-medicinal plants exhibit multiple binding activities on SARS-CoV-2 spike protein receptor-binding domains. Frontiers in Natural Products, 4, 1597609. https://doi.org/10.3389/fntpr.2025.1597609

Ministry of Ayush. (2020). First report and Recommendations: Interdisciplinary Committee for integration of Ayurveda and Yoga Interventions in the ‘National Clinical Management Protocol: COVID-19’.

Mir, S. A., Firoz, A., Alaidarous, M., Alshehri, B., Bin Dukhyil, A. A., Banawas, S., Alsagaby, S. A., Alturaiki, W., Bhat, G. A., Kashoo, F., & Abdel-Hadi, A. M. (2022). Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi Journal of Biological Sciences, 29(1), 394-401. https://doi.org/10.1016/j.sjbs.2021.09.002

Mithilesh, S., Raghunandan, D., & Suresh, P. K. (2022). In-Silico Identification of Natural Compounds from Traditional Medicine as Potential Drug Leads against SARS-CoV-2 Through Virtual Screening. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 92, 81-87. https://doi.org/10.1007/s40011-021-01292-5

Mohanty, S. K., Swamy, M. K., Sinniah, U. R., & Anuradha, M. (2017). Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): Botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules, 22(6), 1019. https://doi.org/10.3390/molecules22061019

Mohapatra, P. K., Chopdar, K. S., Dash, G. C., Mohanty, A. K., & Raval, M. K. (2021). In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease. Journal of Biomolecular Structure and Dynamics, 41(2), 435-444. https://doi.org/10.1080/07391102.2021.2007170

More, P., & Pai, K. (2011). Immunomodulatory effects of Tinospora cordifolia (Guduchi) on macrophage activation. Biology and Medicine, 3(2), 134-140.

Mosquera-Yuqui, F., Lopez-Guerra, N., & Moncayo-Palacio, E. A. (2020). Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 40(5), 2010-2023. https://doi.org/10.1080/07391102.2020.1835716

Mouhajir, F., Hudson, J. B., Rejdali, M., & Towers, G. H. N. (2001). Multiple antiviral activities of endemic medicinal plants used by Berber peoples of Morocco. Pharmaceutical Biology, 39(5), 364-374. https://doi.org/10.1076/phbi.39.5.364.5892

Mukherjee, P. K., Efferth, T., Das, B., Kar, A., Ghosh, S., Singha, S., Debnath, P., Sharma, N., Bhardwaj, P., & Haldar, P. K. (2022). Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. Phytomedicine 98, 153930. https://doi.org/10.1016/j.phymed.2022.153930

Mukta, N., & Neeta, M. P. (2017). A Review on Sesame - an Ethno Medicinally Significant Oil Crop. International Journal of Life Science & Pharma Research, 7(2), 58-63.

Murugan, N. A., Pandian, C. J., & Jeyakanthan, J. (2021). Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. Journal of Biomolecular Structure and Dynamics, 39(12), 4415-4426. https://doi.org/10.1080/07391102.2020.1777901

Muthumanickam, S., Kamaladevi, A., Boomi, P., Gowrishankar, S., & Pandian, S. K. (2021). Indian Ethnomedicinal Phytochemicals as Promising Inhibitors of RNA-Binding Domain of SARS-CoV-2 Nucleocapsid Phosphoprotein: An In Silico Study. Frontiers in Molecular Biosciences, 8, 637329. https://doi.org/10.3389/fmolb.2021.637329

Nallusamy, S., Mannu, J., Ravikumar, C., Angamuthu, K., Nathan, B., Nachimuthu, K., Ramasamy, G., Muthurajan, R., Subbarayalu, M., & Neelakandan, K. (2021). Exploring Phytochemicals of Traditional Medicinal Plants Exhibiting Inhibitory Activity Against Main Protease, Spike Glycoprotein, RNA-dependent RNA Polymerase and Non-Structural Proteins of SARS-CoV-2 Through Virtual Screening. Frontiers in Pharmacology, 12, 667704. https://doi.org/10.3389/fphar.2021.667704

Natesh, J., Mondal, P., Kaur, B., Salam, A. A. A., Kasilingam, S., & Meeran, S. M. (2021). Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Computers in Biology and Medicine, 133, 104383. https://doi.org/10.1016/j.compbiomed.2021.104383

Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 24, 422. https://doi.org/10.1186/s13054-020-03120-0

Niphade, S. R., Asad, M., Chandrakala, G. K., Toppo, E., & Deshmukh, P. (2009). Immunomodulatory activity of Cinnamomum zeylanicum bark. Pharmaceutical Biology, 47(12), 1168-1173. https://doi.org/10.3109/13880200903019234

Ogunyemi, O. M., Gyebi, G. A., Elfiky, A. A., Afolabi, S. O., Ogunro, O. B., Adegunloye, A. P., & Ibrahim, I. M. (2020). Alkaloids and flavonoids from African phytochemicals as potential inhibitors of SARS-Cov-2 RNA-dependent RNA polymerase: an in silico perspective. Antiviral Chemistry and Chemotherapy, 28, 1-15. https://doi.org/10.1177/2040206620984076

Oluyori, A. P., Olanipekun, B. E., Adeyemi, O. S., Egharevba, G. O., Adegboyega, A. E., & Oladeji, O. S. (2022). Molecular docking, pharmacophore modelling, MD simulation and in silico ADMET study reveals bitter cola constituents as potential inhibitors of SARS-CoV-2 main protease and RNA dependent-RNA polymerase. Journal of Biomolecular Structure and Dynamics, 42(4), 1510-1525. https://doi.org/10.1080/07391102.2021.2024883

Oyedara, O. O., Agbedahunsi, J. M., Adeyemi, F. M., Juárez-Saldivar, A., Fadare, O. A., Adetunji, C. O., & Rivera, G. (2021). Computational screening of phytochemicals from three medicinal plants as inhibitors of transmembrane protease serine 2 implicated in SARS-CoV-2 infection. Phytomedicine Plus, 1(4), 100135. https://doi.org/10.1016/j.phyplu.2021.100135

Panda, S. K., Padhi, L., Leyssen, P., Liu, M., Neyts, J., & Luyten, W. (2017). Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Frontiers in Pharmacology, 8, 658. https://doi.org/10.3389/fphar.2017.00658

Pandey, P., Rane, J. S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A., & Ray, S. (2021). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Journal of Biomolecular Structure and Dynamics, 39(16), 6306-6316. https://doi.org/10.1080/07391102.2020.1796811

Pandit, M., & Latha, N. (2020). In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. Research Square, 1-31. https://doi.org/10.21203/rs.3.rs-22687/v1

Parida, P. K., Paul, D., & Chakravorty, D. (2020a). Nature to Nurture- Identifying phytochemicals from Indian medicinal plants as prophylactic medicine by rational screening to be potent against multiple drug targets of SARS-CoV-2. ChemRxiv. https://doi.org/10.26434/chemrxiv.12355937.v1

Parida, P. K., Paul, D., & Chakravorty, D. (2020b). The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS-CoV-2 targets. Phytotherapy Research, 34(12), 3420-3433. https://doi.org/10.1002/ptr.6868

Parida, P. K., Paul, D., & Chakravorty, D. (2021). Nature’s therapy for COVID-19: Targeting the vital non-structural proteins (NSP) from SARS-CoV-2 with phytochemicals from Indian medicinal plants. Phytomedicine Plus, 1(1), 100002. https://doi.org/10.1016/j.phyplu.2020.100002

Patel, C. N., Jani, S. P., Jaiswal, D. G., Kumar, S. P., Mangukia, N., Parmar, R. M., Rawal, R. M., & Pandya, H. A. (2021). Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations. Scientific Reports, 11, 20295. https://doi.org/10.1038/s41598-021-99165-4

Patel, P., & Asdaq, S. M. B. (2010). Immunomodulatory activity of methanolic fruit extract of Aegle marmelos in experimental animals. Saudi Pharmaceutical Journal, 18(3), 161-165. https://doi.org/10.1016/j.jsps.2010.05.006

Paterson, R. W., Brown, R. L., Benjamin, L., Nortley, R., Wiethoff, S., Bharucha, T., Jayaseelan, D. L., Kumar, G., Raftopoulos, R. E., Zambreanu, L., Vivekanandam, V., Khoo, A., Geraldes, R., Chinthapalli, K., Boyd, E., Tuzlali, H., Price, G., Christofi, G., Morrow, J., … Zandi, M. S. (2020). The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain, 143(10), 3104-3120. https://doi.org/10.1093/brain/awaa240

Patil, G. G., Mali, P. Y., & Bhadane, V. V. (2008). Folk remedies used against respiratory disorders in Jalgaon district, Maharashtra. Natural Product Radiance, 7(4), 354-358.

Paul, G. K., Mahmud, S., Aldahish, A. A., Afroze, M., Biswas, S., Gupta, S. B. R., Razu, M. H., Zaman, S., Uddin, M. S., Nahari, M. H., Alshahrani, M. M., Alshahrani, M. A. R., Khan, M., & Saleh, M. A. (2022). Computational screening and biochemical analysis of Pistacia integerrima and Pandanus odorifer plants to find effective inhibitors against Receptor- Binding domain (RBD) of the spike protein of. Arabian Journal of Chemistry, 15(2), 103600. https://doi.org/10.1016/j.arabjc.2021.103600

Phong, N. V., Trang, N. M., Quyen, C. T., Anh, H. L. T., & Vinh, L. B. (2022). SARS-CoV-2 main protease and papain-like protease inhibition by abietane-type diterpenes isolated from the branches of Glyptostrobus pensilis using molecular docking studies. Natural Product Research, 36(24), 6336-6343. https://doi.org/10.1080/14786419.2022.2025801

Qazi, S., Das, S., Khuntia, B. K., Sharma, V., Sharma, S., Sharma, G., & Raza, K. (2021). In Silico Molecular Docking and Molecular Dynamic Simulation Analysis of Phytochemicals From Indian Foods as Potential Inhibitors of SARS-CoV-2 RdRp and 3CLpro. Natural Product Communications, 16(9), 1-12. https://doi.org/10.1177/1934578X211031707

Rabie, A. M. (2022). Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication. ACS Omega, 7(3), 2960-2969. https://doi.org/10.1021/acsomega.1c05998

Rajamanickam, B., Balasubramanian, R., Rajammal, M. Y., Govindaraju, B., Selvaraaju, S. S., Thangarasu, H., & Kadarkarai, K. (2025). Exploring the Potential of Siddha Formulation MilagaiKudineer-Derived Exploring the Potential of Siddha Formulation MilagaiKudineer-Derived Phytotherapeutics Against SARS-CoV-2 : An In-Silico Investigation for Antiviral Intervention. Journal of Pharmacy and Pharmacology Research, 9(2), 17-27. https://doi.org/10.26502/fjppr.0105

Rajchakom, C., Darai, N., Boonma, T., Sungthong, B., Puthongking, P., Nualkaew, S., Sripadung, P., Rungrotmongkol, T., & Nunthaboot, N. (2025). Molecular insights into natural product compounds targeting papain protease of SARS-CoV-2 through molecular dynamics simulation. Monatshefte Fur Chemie - Chemical Monthly, 156, 219-232. https://doi.org/10.1007/s00706-024-03271-8

Rastogi, S., Pandey, D. N., & Singh, R. H. (2020). COVID-19 pandemic: A pragmatic plan for ayurveda intervention. Journal of Ayurveda and Integrative Medicine, 13(1), 100312. https://doi.org/10.1016/j.jaim.2020.04.002

Rodrigues, T., Reker, D., Schneider, P., & Schneider, G. (2016). Counting on natural products for drug design. Nature Chemistry, 8, 531-541. https://doi.org/10.1038/nchem.2479

Ruan, J., Li, Z., Zhang, Y., Chen, Y., Liu, M., Han, L., Zhang, Y., & Wang, T. (2019). Bioactive Constituents from the Roots of Eurycoma longifolia. Molecules, 24(17), 3157. https://doi.org/10.3390/molecules24173157

Rudrapal, M., Celik, I., Khan, J., Ansari, M. A., Alomary, M. N., Alatawi, F. A., Yadav, R., Sharma, T., Tallei, T. E., Pasala, P. K., Sahoo, R. K., Khairnar, S. J., Bendale, A. R., Zothantluanga, J. H., Chetia, D., & Walode, S. G. (2022). Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations. Journal of King Saud University – Science, 34(3), 101826. https://doi.org/10.1016/j.jksus.2022.101826

Saab, A. M., Tacchini, M., Sacchetti, G., Contini, C., Schulz, H., Lampronti, I., Gambari, R., Makhlouf, H., Tannoury, M., Venditti, A., Bianco, A., & Racagni, G. (2021). Phytochemical analysis and potential natural compounds against SARS-CoV-2/COVID-19 in essential oils derived from medicinal plants originating from Lebanon. An information note. Plant Biosystems, 156(4), 855-864. https://doi.org/10.1080/11263504.2021.1932629

Sachan, S., Dhama, K., Latheef, S. K., Samad, H. A., Mariappan, A. K., Munuswamy, P., Singh, R., Singh, K. P., Malik, Y. S., & Singh, R. K. (2019). Immunomodulatory potential of Tinospora cordifolia and CpG ODN (TLR21 agonist) against the very virulent, infectious bursal disease virus in SPF chicks. Vaccines, 7(3), 106. https://doi.org/10.3390/vaccines7030106

Saini, K., & Sharma, S. (2022). Use of Tyrosine Kinase Inhibitors for treating Type 2 Diabetes Mellitus: An appraisal. Chemical Biology Letters, 9(3), 320.

Saini, K., & Sharma, S. (2023). Nanomedicine’s transformative impact on anti-diabetic drug discovery: an appraisal. Journal of Nanoparticle Research, 25, 227. https://doi.org/10.1007/s11051-023-05870-8

Saini, K., & Sharma, S. (2024). QSAR Studies of Sodium/Glucose Co-Transporter 2 Inhibitors as Potent Anti-Diabetic Drug Agents. Theoretical Foundations of Chemical Engineering, 57, S51-S56. https://doi.org/10.1134/S004057952307014X

Saini, K., Khan, Y., & Sharma, S. (2023a). How Effective are Gliflozins as DPP-4 Inhibitors? A Computational Study. Theoretical Foundations of Chemical Engineering, 57, 403-410. https://doi.org/10.1134/S0040579523030168

Saini, K., Sharma, S., & Bhatia, V. (2022). Drug Repurposing and Computational Drug Discovery for Diabetes. Futuristic Trends in Biotechnology, 2, 103-130.

Saini, K., Sharma, S., & Khan, Y. (2023d). DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Frontiers in Molecular Biosciences, 10, 1130625. https://doi.org/10.3389/fmolb.2023.1130625

Saini, K., Sharma, S., Bhatia, V., & Zaidi, S. (2023c). Recent advances in Mass Spectrometry : An appraisal of fundamentals and applications. Journal of Molecular Chemistry, 3(1), 584.

Saini, K., Sharma, S., Bhatia, V., Khan, Y., & Etters, L. (2023b). Dietary Polyphenolics : Mechanistic role in control management of Diabetes and Metabolic Syndrome. Chemical Biology Letters, 10(3), 1-16.

Sampath Kumar, K. P., Bhowmik, D., Chiranjib, Tiwari, P., & Kharel, R. (2010). Indian traditional herbs Adhatoda vasica and its Medicinal application. Journal of Chemical and Pharmaceutical Research, 2(1), 240-245.

Shah, R. R. (2021). Chloroquine and hydroxychloroquine for COVID-19: Perspectives on their failure in repurposing. Journal of Clinical Pharmacy and Therapeutics, 46(1), 17-27. https://doi.org/10.1111/jcpt.13267

Sharma, M. L., Rao, C. S., & Duda, P. L. (1994). Immunostimulatory activity of Picrorhiza kurroa leaf extract. Journal of Ethnopharmacology, 41(3), 185-192. https://doi.org/10.1016/0378-8741(94)90031-0

Sharma, S., & Bhatia, V. (2020a). Drug Design of GLP-1 Receptor Agonists: Importance of In Silico Methods. Current Pharmaceutical Design, 27(8), 1015-1024. https://doi.org/10.2174/1381612826666201118094502

Sharma, S., & Bhatia, V. (2020b). Phytochemicals for Drug Discovery in Alzheimer’s Disease: In Silico Advances. Current Pharmaceutical Design, 27(25), 2848-2860. https://doi.org/10.2174/1381612826666200928161721

Sharma, S., Khan, Y., & Saini, K. (2022). Role of QSAR in filling in the gaps of COVID 19 therapeutics. Pharma Focus Europe.

Sherif, Y. E., Gabr, S. A., Hosny, N. M., Alghadir, A. H., & Alansari, R. (2021). Phytochemicals of Rhus spp. as Potential Inhibitors of the SARS-CoV-2 Main Protease: Molecular Docking and Drug-Likeness Study. Evidence-Based Complementary and Alternative Medicine, 2021, 8814890. https://doi.org/10.1155/2021/8814890

Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2022). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants–Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)–a molecular docking study. Journal of Biomolecular Structure and Dynamics, 40(1), 190-203. https://doi.org/10.1080/07391102.2020.1810778

Singh, A. K., Singh, A., Shaikh, A., Singh, R., & Misra, A. (2020a). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 241-246. https://doi.org/10.1016/j.dsx.2020.03.011

Singh, E., Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020b). A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. Journal of Genetic Engineering and Biotechnology, 18(1), 69. https://doi.org/10.1186/s43141-020-00085-z

Singh, P., Chauhan, S. S., Pandit, S., Sinha, M., Gupta, S., Gupta, A., & Parthasarathi, R. (2021). The dual role of phytochemicals on SARS-CoV-2 inhibition by targeting host and viral proteins. Journal of Traditional and Complementary Medicine, 12(1), 90-99. https://doi.org/10.1016/j.jtcme.2021.09.001

Soleymani, S., Naghizadeh, A., Karimi, M., Zarei, A., Mardi, R., Kordafshari, G., Esmaealzadeh, N., & Zargaran, A. (2022). COVID-19: General Strategies for Herbal Therapies. Journal of Evidence-Based Integrative Medicine, 27, 1-18. https://doi.org/10.1177/2515690x211053641

Srivastav, V. K., Egbuna, C., & Tiwari, M. (2020). Plant secondary metabolites as lead compounds for the production of potent drugs. In C. Egbuna, S. Kumar, J. C. Ifemeje, S. M. Ezzat & S. Kaliyaperumal (Eds.), Phytochemicals as Lead Compounds for New Drug Discovery (pp. 3-14) Amsterdam, Netherlands: Elsevier Inc. https://doi.org/10.1016/B978-0-12-817890-4.00001-9

Srivastava, J. K., Shankar, E., & Gupta, S. (2010). Chamomile: A herbal medicine of the past with a bright future (review). Molecular Medicine Reports, 3(6), 895-901. https://doi.org/10.3892/mmr.2010.377

Sumon, T. A., Hussain, M. A., Hasan, M. T., Hasan, M., Jang, W. J., Bhuiya, E. H., Chowdhury, A. A. M., Sharifuzzaman, S. M., Brown, C. L., Kwon, H.-J., & Lee, E.-W. (2020). A revisit to the research updates of drugs, vaccines and bioinformatics approaches in combating COVID-19 pandemic. Frontiers in Molecular Biosciences, 7, 585899. https://doi.org/10.3389/fmolb.2020.585899

Swain, S. S., Panda, S. K., & Luyten, W. (2021). Phytochemicals against SARS-CoV as potential drug leads. Biomedical Journal, 44(1), 74-85. https://doi.org/10.1016/j.bj.2020.12.002

Swamy, M. K. (2020). Plant-derived Bioactives: Production, Properties and Therapeutic Applications. Singapore: Springer. https://doi.org/10.1007/978-981-15-1761-7

Tahir ul Qamar, M., Alqahtani, S. M., Alamri, M. A., & Chen, L. L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313-319. https://doi.org/10.1016/j.jpha.2020.03.009

Vicidomini, C., Roviello, V., & Roviello, G. N. (2021). In silico investigation on the interaction of chiral phytochemicals from Opuntia ficus-indica with SARS-CoV-2 Mpro. Symmetry, 13(6), 1041. https://doi.org/10.3390/sym13061041

Wadanambi, P. M., Mannapperuma, U., & Jayathilaka, N. (2025). Evaluating phytochemicals as SARS-CoV-2 papain-like protease inhibitors: a docking, ADMET and molecular dynamics investigation. Chemical Papers, 79, 2801-2821. https://doi.org/10.1007/s11696-025-03968-y

WHO. (2019). WHO global report on traditional and complementary medicine 2019. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/312342/9789241515436-eng.pdf?ua=1

Win, N. N., Kodama, T., Lae, K. Z. W., Win, Y. Y., Ngwe, H., Abe, I., & Morita, H. (2019). Bis-iridoid and iridoid glycosides: Viral protein R inhibitors from Picrorhiza kurroa collected in Myanmar. Fitoterapia, 134, 101-107. https://doi.org/10.1016/j.fitote.2019.02.016

Woo, S.-Y., Win, N. N., Noe Oo, W. M., Ngwe, H., Ito, T., Abe, I., & Morita, H. (2019). Viral protein R inhibitors from Swertia chirata of Myanmar. Journal of Bioscience and Bioengineering, 128(4), 445-449. https://doi.org/10.1016/j.jbiosc.2019.04.006

Yanez, N. D., Weiss, N. S., Romand, J.-A., & Treggiari, M. M. (2020). COVID-19 mortality risk for older men and women. BMC Public Health, 20, 1742. https://doi.org/10.1186/s12889-020-09826-8

Yang, R., Liu, H., Bai, C., Wang, Y., Zhang, X., Guo, R., Wu, S., Wang, J., Leung, E., Chang, H., Li, P., Liu, T., & Wang, Y. (2020). Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacological Research, 157, 104820. https://doi.org/10.1016/j.phrs.2020.104820

Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559. https://doi.org/10.3390/molecules21050559

Zaia, M. G., Cagnazzo, T. di O., Feitosa, K. A., Soares, E. G., Faccioli, L. H., Allegretti, S. M., Afonso, A., & Anibal, F. de F. (2016). Anti-inflammatory properties of menthol and menthone in Schistosoma mansoni infection. Frontiers in Pharmacology, 7, 170. https://doi.org/10.3389/fphar.2016.00170

Zeng, F., Huang, Y., Guo, Y., Yin, M., Chen, X., Xiao, L., & Deng, G. (2020). Association of inflammatory markers with the severity of COVID-19: A meta-analysis. International Journal of Infectious Diseases, 96, 467-474. https://doi.org/10.1016/j.ijid.2020.05.055

Zhang, D., Wu, K., Zhang, X., Deng, S., & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18(2), 152-158. https://doi.org/10.1016/j.joim.2020.02.005

Zhang, K. (2020). Is traditional Chinese medicine useful in the treatment of COVID-19? The American Journal of Emergency Medicine, 38(10), 2238. https://doi.org/10.1016/j.ajem.2020.03.046

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfelld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412. https://doi.org/10.1126/science.abb3405

Zhang, Y., Wang, Z., Zhang, Y., Tong, H., Zhang, Y., & Lu, T. (2020). Potential Mechanisms for Traditional Chinese Medicine in Treating Airway Mucus Hypersecretion Associated With Coronavirus Disease 2019. Frontiers in Molecular Biosciences, 7, 577285. https://doi.org/10.3389/fmolb.2020.577285

Published

17-06-2025

How to Cite

Saini, K., Sharma, S., Bhatia, V., Zaidi, S., & Dhalani, J. (2025). Multi-target therapeutic interventions based on phytochemicals for SARS-CoV-2. Current Botany, 16, 169–180. https://doi.org/10.25081/cb.2025.v16.8634

Issue

Section

Regular Articles