Multi-target therapeutic interventions based on phytochemicals for SARS-CoV-2
DOI:
https://doi.org/10.25081/cb.2025.v16.8634Keywords:
Coronavirus, Phytochemicals, Medicinal plants, AyurvedaAbstract
COVID-19 has an unprecedented effect on every aspect of human existence. The chief targets for drug design against SARS-CoV-2 are, spike envelope glycoprotein (S), the viral main proteinase Mpro, also referred to as 3CLpro, Angiotensin-converting enzyme 2 (ACE-2), and RNA-dependent RNA polymerase (RdRp). A systematic literature survey was performed extensively from various published sources and peer-reviewed electronic databases such as PubMed, Scielo, Google Scholar, and Science Direct databases to obtain peer-reviewed studies on the chief targets for drug design against SARS-CoV-2 and phytochemicals. Of the 1012 titles identified by the search, 151 were adequate according to the inclusion and exclusion criteria. The promising antibacterial, antioxidant, anti-inflammatory, and antiviral activities of phytochemicals make them an attractive option for drug discovery against SARS-CoV-2. In the quest for finding drug molecules against these targets, ethno-medicinal knowledge is also being explored. In this review, the authors have deduced the available phytochemicals with reported anti-CoV activity. In addition to that, the authors have also briefly thrown light on the etiologic and existing drug targets for SARS-CoV-2. Authors conclude that a multi-target treatment strategy would be the most useful approach against SARS-CoV-2 and phytochemicals can prove to be the gold mine for designing such drugs.
Downloads
References
Abdullahi, Y., Uthman, U., Shanono, U., Okechukwu, U., Nkechi, O., & Egbe, E. (2025). Molecular docking of SARS ‑ CoV ‑ 2 surface proteins with some active metabolites from plants used in the therapy of common cold : potential drug identifcation. Journal of Umm Al-Qura University for Applied Sciences, 2025, 1-16. https://doi.org/10.1007/s43994-025-00237-2
Adelusi, T. I., Oyedele, A.-Q. K., Monday, O. E., Boyenle, I. D., Idris, M. O., Ogunlana, A. T., Ayoola, A. M., Fatoki, J. O., Kolawole, O. E., David, K. B., & Olayemi, A. A. (2022). Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations. Journal of Molecular Structure, 1250, 131879. https://doi.org/10.1016/j.molstruc.2021.131879
Afifi, A., Ayoub, M., Kutkat, O., GabAllah, M., & Mohammed, R. (2025). Profiling the phytochemicals and anti-SARS CoV-2 activity of different Ligustrum ovalifolium Hassk aerial part extracts: An in vitro-in silico study. Egyptian Journal of Chemistry, 68(3), 409-433. https://doi.org/10.21608/ejchem.2024.296342.9836
Ahmad, M., Butt, M. A., Zhang, G., Sultana, S., Tariq, A., & Zafar, M. (2018). Bergenia ciliata: A comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. Biomedicine & Pharmacotherapy, 97, 708-721. https://doi.org/10.1016/j.biopha.2017.10.141
Ahmad, S., Zahiruddin, S., Parveen, B., Basist, P., Parveen, A., Gaurav, Parveen, R., & Ahmad, M. (2021). Indian Medicinal Plants and Formulations and Their Potential Against COVID-19–Preclinical and Clinical Research. Frontiers in Pharmacology, 11, 578970. https://doi.org/10.3389/fphar.2020.578970
Ahmed, M. N., Jahan, R., Nissapatorn, V., Wilairatana, P., & Rahmatullah, M. (2022). Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomedicine & Pharmacotherapy, 146, 112507. https://doi.org/10.1016/j.biopha.2021.112507
Alamri, M. A., Altharawi, A., Alabbas, A. B., Alossaimi, M. A., & Alqahtani, S. M. (2020). Structure-based virtual screening and molecular dynamics of phytochemicals derived from Saudi medicinal plants to identify potential COVID-19 therapeutics. Arabian Journal of Chemistry, 13(9), 7224-7234. https://doi.org/10.1016/j.arabjc.2020.08.004
Al-kuraishy, H. M., Al-Gareeb, A. I., & El-Saber Batiha, G. (2022). The possible role of Ursolic acid in Covid-19: A real game changer. Clinical Nutrition ESPEN, 47, 414-417. https://doi.org/10.1016/j.clnesp.2021.12.030
Alsuhaibani, S., & Khan, M. A. (2017). Immune-stimulatory and therapeutic activity of tinospora cordifolia: Double-edged sword against salmonellosis. Journal of Immunology Research, 2017, 1787803. https://doi.org/10.1155/2017/1787803
Andersen, K. G., Rambaut, A., lan Lipkin, W., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450-452. https://doi.org/10.1038/s41591-020-0820-9
Anhê, F. F., Desjardins, Y., Pilon, G., Dudonné, S., Genovese, M. I., Lajolo, F. M., & Marette, A. (2013). Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition, 1(4), 105-114. https://doi.org/10.1016/j.phanu.2013.07.004
Asante, D.-B., Henneh, I. T., Acheampong, D. O., Kyei, F., Adokoh, C. K., Ofori, E. G., Domey, N. K., Adakudugu, E., Tangella, L. P., & Ameyaw, E. O. (2019). Anti-inflammatory, anti-nociceptive and antipyretic activity of young and old leaves of Vernonia amygdalina. Biomedicine and Pharmacotherapy, 111, 1187-1203. https://doi.org/10.1016/j.biopha.2018.12.147
Awasthi, M., Singh, S., Pandey, V. P., & Dwivedi, U. N. (2016). Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. Journal of the Neurological Sciences, 361, 256-271. https://doi.org/10.1016/j.jns.2016.01.008
Balasubramanian, G., Sarathi, M., Kumar, S. R., & Hameed, A. S. S. (2007). Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp. Aquaculture, 263(1-4), 15-19. https://doi.org/10.1016/j.aquaculture.2006.09.037
Bano, S., Singh, J., Zehra, Z., Sulaimani, M. N., Mohammad, T., Yumlembam, S., Hassan, M. I., Islam, A., & Dey, S. K. (2025). Biochemical Screening of Phytochemicals and Identification of Scopoletin as a Potential Inhibitor of SARS-CoV-2 Mpro, Revealing Its Biophysical Impact on Structural Stability. Viruses, 17(3), 402. https://doi.org/10.3390/v17030402
Barkat, M. A., Kaushik, P., Barkat, H. A., Khan, M. I., & Hadi, H. A. (2022). Phytoconstituents in the Management of Covid-19: Demystifying the Fact. Drug Research, 72(3), 123-130. https://doi.org/10.1055/a-1697-5365
Bhalla, G., Kaur, S., Kaur, J., Kaur, R., & Raina, P. (2017). Antileishmanial and immunomodulatory potential of Ocimum sanctum Linn. and Cocos nucifera Linn. in murine visceral leishmaniasis. Journal of Parasitic Diseases, 41, 76-85. https://doi.org/10.1007/s12639-016-0753-x
Bharathi, M., Sivamaruthi, B. S., Kesika, P., Thangaleela, S., & Chaiyasut, C. (2022). In Silico Screening of Potential Phytocompounds from Several Herbs against SARS-CoV-2 Indian Delta Variant B.1.617.2 to Inhibit the Spike Glycoprotein Trimer. Applied Sciences, 12(2), 665. https://doi.org/10.3390/app12020665
Bhattacharya, S., & Paul, S. M. N. (2021). Efficacy of phytochemicals as immunomodulators in managing COVID-19: a comprehensive view. VirusDisease, 32, 435-445. https://doi.org/10.1007/s13337-021-00706-2
Boukhatem, M. N., & Setzer, W. N. (2020). Aromatic Herbs, Medicinal Plant-Derived Essential Oils , and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives. Plants, 9(6), 800. https://doi.org/10.3390/plants9060800
Cayona, R., & Creencia, E. (2021). Phytochemical Mining of Potential SARS-CoV-2 Main Protease Inhibitors from Phytochemical Mining of Potential SARS-CoV-2 Main Protease Inhibitors from Blumea balsamifera (L.) DC. Philippine Journal of Science, 151(1), 235-261.
Chang, J. S., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology, 145(1), 146-151. https://doi.org/10.1016/j.jep.2012.10.043
Chen, J., Wang, Y., Gao, Y., Hu, L.-S., Yang, J., Wang, J., Sun ,W., Liang, Z., Cao, Y., Cao, Y. (2020). Protection against COVID-19 injury by qingfei paidu decoction via anti- viral, anti-inflammatory activity and metabolic programming. Biomedicine & Pharmacotherapy Journal, 129, 110281. https://doi.org/10.1016/j.biopha.2020.110281
Choudhary, N., & Singh, V. (2022). Multi-scale mechanism of antiviral drug-alike phytoligands from Ayurveda in managing COVID-19 and associated metabolic comorbidities: insights from network pharmacology. Molecular Diversity, 26, 2575-2594. https://doi.org/10.1007/s11030-021-10352-x
Cohen, M. M. (2014). Tulsi - Ocimum sanctum: A herb for all reasons. Journal of Ayurveda and Integrative Medicine, 5(4), 251-259. https://doi.org/10.4103/0975-9476.146554
Dali, Y., Abbasi, S. M., Khan, S. A. F., Larra, S. A., Rasool, R., Ain, Q. T., & Jafar, T. H. (2019). Computational drug design and exploration of potent phytochemicals against cancer through in silico approaches. Biomedical Letters, 5(1), 21-26.
Davinelli, S., Sapere, N., Zella, D., Bracale, R., Intrieri, M., & Scapagnini, G. (2012). Pleiotropic Protective Effects of Phytochemicals in Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2012, 386527. https://doi.org/10.1155/2012/386527
Devaux, C. A., Rolain, J.-M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5). https://doi.org/10.1016/j.ijantimicag.2020.105938
Devi, M. S. S., Sathiyarajeswaran, P., Kumar, D. T., Kumar, S. U., Siva, R., Doss, G. P., & Kanakavalli, K. (2022). Siddha Medicine and Computer Modeling: A Treasure for SARS-CoV-2 Treatment. In A. T. Azar & A. E. Hassanien (Eds.), Modeling, Control and Drug Development for COVID-19 Outbreak Prevention (Vol. 366, pp. 521-541) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-72834-2_15
Dey, L., Chakraborty, S., & Mukhopadhyay, A. (2020). Machine learning techniques for sequence-based prediction of viral–host interactions between SARS-CoV-2 and human proteins. Biomedical Journal, 43(5), 438-450. https://doi.org/10.1016/j.bj.2020.08.003
Dutta, S., Pushan, S. S., Ghosh, R., Jose, M., & Pritam, M. (2025). In silico Study of Antiviral Phytochemicals for the Potential Drug Development Against Wild-type and Omicron Variants of SARS-CoV-2. Current Pharmaceutical Biotechnology, 10, 1-20. https://doi.org/10.2174/0113892010251819241120050831
Ebenezer, O., Bodede, O., Awolade, P., Jordaan, M. A., Ogunsakin, R. E., & Shapi, M. (2022). Medicinal plants with anti-SARS-CoV activity repurposing for treatment of COVID-19 infection: A systematic review and meta-analysis. Acta Pharmaceutica, 72(2), 199-224. https://doi.org/10.2478/acph-2022-0021
Eng, Y. S., Lee, C. H., Lee, W. C., Huang, C. C., & Chang, J. S. (2019). Unraveling the molecular mechanism of traditional Chinese medicine: Formulas against acute airway viral infections as examples. Molecules, 24(19), 3505. https://doi.org/10.3390/molecules24193505
Fraser, E. (2020). Long term respiratory complications of covid-19. British Medical Journal, 2020, 370. https://doi.org/10.1136/bmj.m3001
George, A., Suzuki, N., Abas, A. B., Mohri, K., Utsuyama, M., Hirokawa, K., & Takara, T. (2016). Immunomodulation in middle-aged humans via the ingestion of Physta® standardized root water extract of Eurycoma longifolia Jack - A randomized, double-blind, placebo-controlled, parallel study. Phytotherapy Research, 30(4), 627-635. https://doi.org/10.1002/ptr.5571
Gerlach, S. L., Chandra, P. K., Roy, U., Gunasekera, S., Göransson, U., Wimley, W. C., Braun, S. E., & Mondal, D. (2019). The Membrane-Active Phytopeptide Cycloviolacin O2 Simultaneously Targets HIV-1-infected Cells and Infectious Viral Particles to Potentiate the Efficacy of Antiretroviral Drugs. Medicines, 6(1), 33. https://doi.org/10.3390/medicines6010033
Ghanimi, R., Ouhammou, A., Atki, Y. E., & Cherkaoui, M. (2022). Molecular docking study of the main phytochemicals of some medicinal plants used against COVID-19 by the rural population of Al-Haouz region, Morocco. Journal of Pharmacy & Pharmacognosy Research, 10(1), 227-238. https://doi.org/10.56499/jppres21.1200_10.2.227
Ghoke, S. S., Sood, R., Kumar, N., Pateriya, A. K., Bhatia, S., Mishra, A., Dixit, R., Singh, V. K., Desai, D. N., Kulkarni, D. D., Dimri, U., & Singh, V. P. (2018). Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complementary and Alternative Medicine, 18, 174. https://doi.org/10.1186/s12906-018-2238-1
Gorlenko, C. L., Kiselev, H. Y., Budanova, E. V., Zamyatnin, A. A., & Ikryannikova, L. N. (2020). Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics? Antibiotics, 9(4), 170. https://doi.org/10.3390/antibiotics9040170
Gowrishankar, S., Muthumanickam, S., Kamaladevi, A., Karthika, C., Jothi, R., Boomi, P., Maniazhagu, D., & Pandian, S. K. (2021). Promising phytochemicals of traditional Indian herbal steam inhalation therapy to combat COVID-19 – An in silico study. Food and Chemical Toxicology, 148, 111966. https://doi.org/10.1016/j.fct.2020.111966
Gurung, A. B., Ali, M. A., Al-Hemaid, F., El-Zaidy, M., & Lee, J. (2022). In silico analyses of major active constituents of fingerroot (Boesenbergia rotunda) unveils inhibitory activities against SARS-CoV-2 main protease enzyme. Saudi Journal of Biological Sciences, 29(1), 65-74. https://doi.org/10.1016/j.sjbs.2021.11.053
Harrison, C. (2020). Coronavirus puts drug repurposing on the fast track. Nature Biotechnology, 38, 379-381. https://doi.org/10.1038/d41587-020-00003-1
Harrison, S. L., Fazio-Eynullayeva, E., Lane, D. A., Underhill, P., & Lip, G. Y. H. (2020). Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLoS Medicine, 17(9), e1003321. https://doi.org/10.1371/journal.pmed.1003321
Hasan, A., Al Mahamud, R., Jannat, K., & Bondhon, T. A., Farzana, B., Fariba, M. H., Jahan, R., & Rahmatullah, M. (2020). Phytochemicals from Solanum surattense Burm. f. have high binding affinities for C-3 like main protease of COVID-19 (SARS-CoV-2). Journal of Medicinal Plants Studies, 8(4), 20-26.
Hasan, A., Biswas, P., Bondhon, T. A., Jannat, K., Paul, T. K., Paul, A. K., Jahan, R., Nissapatorn, V., Mahboob, T., Wilairatana, P., Hasan, M. N., de Lourdes Pereira, M., Wiart, C., & Rahmatullah, M. (2022). Can Artemisia herba-alba Be Useful for Managing COVID-19 and Comorbidities? Molecules, 27(2), 492. https://doi.org/10.3390/molecules27020492
Hasan, A., Jannat, K., Bondhon, T. A., Jahan, R., Hossan, M. S., de Lourdes Pereira, M., Nissapatorn, V., Wiart, C., & Rahmatullah, M. (2021). Can Antimalarial Phytochemicals be a Possible Cure for COVID-19? Molecular Docking Studies of Some Phytochemicals to SARS-CoV-2 3C-like Protease. Infectious Disorders - Drug Targets, 21(1), e290721195143. https://doi.org/10.2174/1871526521666210729164054
Hussain, I., Hussain, A., Alajmi, M. F., Rehman, M. T., & Amir, S. (2021). Impact of repurposed drugs on the symptomatic COVID-19 patients. Journal of Infection and Public Health, 14(1), 24-38. https://doi.org/10.1016/j.jiph.2020.11.009
Idrees, M., Khan, S., Memon, N. H., & Zhang, Z. (2021). Effect of the Phytochemical Agents against the SARS-CoV and Some of them Selected for Application to COVID-19: A Mini-Review. Current Pharmaceutical Biotechnology, 22(4), 444-450.
Jahan, R., Paul, A. K., Bondhon, T. A., Hasan, A., Jannat, K., Mahboob, T., Nissapatorn, V., Pereira, M. de L., Wiart, C., Wilairatana, P., & Rahmatullah, M. (2021). Zingiber officinale: Ayurvedic Uses of the Plant and In Silico Binding Studies of Selected Phytochemicals With Mpro of SARS-CoV-2. Natural Product Communications, 16(10), 1-13. https://doi.org/10.1177/1934578X211031766
Janlou, M. A. M., Sahebjamee, H., Alaie, H. R., & Heidari, M. (2025). A Virtual Study on the Active Ingredients of Zingiber officinale and Boswellia serrata as Potential Natural Inhibitors of SARS-COV-2 Main Protease Enzyme. Journal of Medicinal Plants and By-Products, 14(2), 137-148. https://doi.org/10.22034/jmpb.2024.365268.1670
Jannat, K., Hasan, A., Al Mahamud, R., Jahan, R., Bondhon, T. A., Rahmatullah, M., Farzana, B., & Rahmatullah, M. (2020). In silico screening of Vigna radiata and Vigna mungo phytochemicals for their binding affinity to SARS-CoV-2 (COVID-19) main protease (3CLpro). Journal of Medicinal Plants Studies, 8(4), 89-95.
Jia, W., Wang, C., Wang, Y., Pan, G., Jiang, M., Li, Z., & Zhu, Y. (2015). Qualitative and quantitative analysis of the major constituents in Chinese medical preparation lianhua-qingwen capsule by UPLC-DAD-QTOF-MS. The Scientific World Journal, 2015, 731765. https://doi.org/10.1155/2015/731765
Jin, J. H., Lee, D.-U., Kim, Y. S., & Kim, H. P. (2011). Anti-allergic activity of sesquiterpenes from the rhizomes of Cyperus rotundus. Archives of Pharmacal Research, 34, 223-228. https://doi.org/10.1007/s12272-011-0207-z
Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145-151. https://doi.org/10.1080/14756366.2019.1690480
Joshi, G., Sindhu, J., Thakur, S., Rana, A., Sharma, G., Mayank, & Poduri, R. (2021). Recent efforts for drug identification from phytochemicals against SARS-CoV-2: Exploration of the chemical space to identify druggable leads. Food and Chemical Toxicology, 152, 112160. https://doi.org/10.1016/j.fct.2021.112160
Kakkar, R., & Sharma, S. (2011). DFT study of interactions of carbenes with boron nitride nanotubes. Chemistry Journal, 1(1), 9-20.
Kamat, S., & Kumari, M. (2021). Repurposing Chloroquine Against Multiple Diseases With Special Attention to SARS-CoV-2 and Associated Toxicity. Frontiers in Pharmacology, 12, 576093. https://doi.org/10.3389/fphar.2021.576093
Kolifarhood, G., Aghaali, M., Saadati, H. M., Taherpour, N., Rahimi, S., Izadi, N., & Nazari, S. S. H. (2020). Epidemiological and Clinical Aspects of COVID-19; a Narrative Review. Archives of Academic Emergency Medicine, 8(1), e41.
Koulgi, S., Jani, V., Uppuladinne, M., Sonavane, U., Nath, A. K., Darbari, H., & Joshi, R. (2021). Drug repurposing studies targeting SARS-CoV-2: an ensemble docking approach on drug target 3C-like protease (3CLpro). Journal of Biomolecular Structure and Dynamics, 39(15), 5735-5755. https://doi.org/10.1080/07391102.2020.1792344
Kumar, S., Kashyap, P., Chowdhury, S., Kumar, S., Panwar, A., & Kumar, A. (2021). Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine, 85, 153317. https://doi.org/10.1016/j.phymed.2020.153317
Kumar, S., Paul, P., Yadav, P., Kaul, R., Maitra, S. S., Jha, S. K., & Chaari, A. (2022). A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Computers in Biology and Medicine, 142, 105231. https://doi.org/10.1016/j.compbiomed.2022.105231
Lai, W.-L., Chuang, H.-S., Lee, M.-H., Wei, C.-L., Lin, C.-F., & Tsai, Y.-C. (2012). Inhibition of herpes simplex virus type 1 by thymol-related mono-terpenoids. Planta Medica, 78(15), 1636-1638. https://doi.org/10.1055/s-0032-1315208
Lampariello, L. R., Cortelazzo, A., Guerranti, R., Sticozzi, C., & Valacchi, G. (2012). The magic velvet bean of mucuna pruriens. Journal of Traditional and Complementary Medicine, 2(4), 331-339. https://doi.org/10.1016/S2225-4110(16)30119-5
Lee, D. Y. W., Li, Q. Y., Liu, J., & Efferth, T. (2021). Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine, 80, 153337. https://doi.org/10.1016/j.phymed.2020.153337
Li, L., Ma, L., Hu, Y., Li, X., Yu, M., Shang, H., & Zou, Z. (2022). Natural biflavones are potent inhibitors against SARS-CoV-2 papain-like protease. Phytochemistry, 193, 112984. https://doi.org/10.1016/j.phytochem.2021.112984
Lim, X. Y., Teh, B. P., & Tan, T. Y. C. (2021). Medicinal Plants in COVID-19: Potential and Limitations. Frontiers in Pharmacology, 12, 611408. https://doi.org/10.3389/fphar.2021.611408
Lin, Y., Chiang, C.-Y., Shibu, M. A., Su, S.-H., Dass, K. T. P., Lin, P., Lin, S.-Z., Ho, T.-J., Kuo, W.-W., & Huang, C.-Y. (2022). Novel Herbal Formulation Jing Si Exhibits Multiple Functions to Inhibit Replication Activity and Subsides Viral Load of COVID-19 Variants. Research Square, 1-16. https://doi.org/10.21203/rs.3.rs-1122886/v1
Liu, A.-L., & Du, G.-H. (2012). Antiviral Properties of Phytochemicals. In A. K. Patra (Eds), Dietary Phytochemicals and Microbes (pp. 93-126) Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-007-3926-0_3
Liu, Z., Li, X., Gou, C., Li, L., Luo, X., Zhang, C., Zhang, Y., Zhang, J., Jin, A., Li, H., Zeng, Y., Li, T., & Wang, X. (2020). Effect of Jinhua Qinggan granules on novel coronavirus pneumonia in patients. Journal of Traditional Chinese Medicine, 40(3), 467-472. https://doi.org/10.19852/j.cnki.jtcm.2020.03.016
Loizzo, M. R., Saab, A. M., Tundis, R., Statti, G. A., Menichimi, F., Lampronti, I., Gambari, R., Cinatl, J., & Doerr, H. W. (2008). Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chemistry and Biodiversity, 5(3), 461-470. https://doi.org/10.1002/cbdv.200890045
Luo, E., Zhang, D., Luo, H., Liu, B., Zhao, K., Zhao, Y., Bian, Y., & Wang, Y. (2020). Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19): An empirical study from Wuhan, Hubei Province, China. Chinese Medicine, 15, 34. https://doi.org/10.1186/s13020-020-00317-x
Majeed, A., Hussain, W., Yasmin, F., Akhtar, A., & Rasool, N. (2021). Virtual Screening of Phytochemicals by Targeting HR1 Domain of SARS-CoV-2 S Protein: Molecular Docking, Molecular Dynamics Simulations, and DFT Studies. BioMed Research International, 2021, 6661191. https://doi.org/10.1155/2021/6661191
Majnooni, M. B., Fakhri, S., Bahrami, G., Naseri, M., Farzaei, M. H., & Echeverría, J. (2021). Alkaloids as Potential Phytochemicals against SARS-CoV-2: Approaches to the Associated Pivotal Mechanisms. Evidence-Based Complementary and Alternative Medicine, 2021, 6632623. https://doi.org/10.1155/2021/6632623
Malekmohammad, K., & Rafieian-Kopaei, M. (2021). Mechanistic Aspects of Medicinal Plants and Secondary Metabolites against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Current Pharmaceutical Design, 27(38), 3996-4007. https://doi.org/10.2174/1381612827666210705160130
Maurya, D. K. (2020). Evaluation of Yashtimadhu (Glycyrrhiza glabra) active Phytochemicals Against Novel Coronavirus (SARS-CoV-2). Research Square, 1-18. https://doi.org/10.21203/rs.3.rs-26480/v1
Milugo, T. K., Owuor, B., Okanya, P. W., Chepukosi, K., & Obiero, G. F. (2025). Natural compounds from ethno-medicinal plants exhibit multiple binding activities on SARS-CoV-2 spike protein receptor-binding domains. Frontiers in Natural Products, 4, 1597609. https://doi.org/10.3389/fntpr.2025.1597609
Ministry of Ayush. (2020). First report and Recommendations: Interdisciplinary Committee for integration of Ayurveda and Yoga Interventions in the ‘National Clinical Management Protocol: COVID-19’.
Mir, S. A., Firoz, A., Alaidarous, M., Alshehri, B., Bin Dukhyil, A. A., Banawas, S., Alsagaby, S. A., Alturaiki, W., Bhat, G. A., Kashoo, F., & Abdel-Hadi, A. M. (2022). Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi Journal of Biological Sciences, 29(1), 394-401. https://doi.org/10.1016/j.sjbs.2021.09.002
Mithilesh, S., Raghunandan, D., & Suresh, P. K. (2022). In-Silico Identification of Natural Compounds from Traditional Medicine as Potential Drug Leads against SARS-CoV-2 Through Virtual Screening. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 92, 81-87. https://doi.org/10.1007/s40011-021-01292-5
Mohanty, S. K., Swamy, M. K., Sinniah, U. R., & Anuradha, M. (2017). Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): Botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules, 22(6), 1019. https://doi.org/10.3390/molecules22061019
Mohapatra, P. K., Chopdar, K. S., Dash, G. C., Mohanty, A. K., & Raval, M. K. (2021). In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease. Journal of Biomolecular Structure and Dynamics, 41(2), 435-444. https://doi.org/10.1080/07391102.2021.2007170
More, P., & Pai, K. (2011). Immunomodulatory effects of Tinospora cordifolia (Guduchi) on macrophage activation. Biology and Medicine, 3(2), 134-140.
Mosquera-Yuqui, F., Lopez-Guerra, N., & Moncayo-Palacio, E. A. (2020). Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 40(5), 2010-2023. https://doi.org/10.1080/07391102.2020.1835716
Mouhajir, F., Hudson, J. B., Rejdali, M., & Towers, G. H. N. (2001). Multiple antiviral activities of endemic medicinal plants used by Berber peoples of Morocco. Pharmaceutical Biology, 39(5), 364-374. https://doi.org/10.1076/phbi.39.5.364.5892
Mukherjee, P. K., Efferth, T., Das, B., Kar, A., Ghosh, S., Singha, S., Debnath, P., Sharma, N., Bhardwaj, P., & Haldar, P. K. (2022). Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. Phytomedicine 98, 153930. https://doi.org/10.1016/j.phymed.2022.153930
Mukta, N., & Neeta, M. P. (2017). A Review on Sesame - an Ethno Medicinally Significant Oil Crop. International Journal of Life Science & Pharma Research, 7(2), 58-63.
Murugan, N. A., Pandian, C. J., & Jeyakanthan, J. (2021). Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. Journal of Biomolecular Structure and Dynamics, 39(12), 4415-4426. https://doi.org/10.1080/07391102.2020.1777901
Muthumanickam, S., Kamaladevi, A., Boomi, P., Gowrishankar, S., & Pandian, S. K. (2021). Indian Ethnomedicinal Phytochemicals as Promising Inhibitors of RNA-Binding Domain of SARS-CoV-2 Nucleocapsid Phosphoprotein: An In Silico Study. Frontiers in Molecular Biosciences, 8, 637329. https://doi.org/10.3389/fmolb.2021.637329
Nallusamy, S., Mannu, J., Ravikumar, C., Angamuthu, K., Nathan, B., Nachimuthu, K., Ramasamy, G., Muthurajan, R., Subbarayalu, M., & Neelakandan, K. (2021). Exploring Phytochemicals of Traditional Medicinal Plants Exhibiting Inhibitory Activity Against Main Protease, Spike Glycoprotein, RNA-dependent RNA Polymerase and Non-Structural Proteins of SARS-CoV-2 Through Virtual Screening. Frontiers in Pharmacology, 12, 667704. https://doi.org/10.3389/fphar.2021.667704
Natesh, J., Mondal, P., Kaur, B., Salam, A. A. A., Kasilingam, S., & Meeran, S. M. (2021). Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Computers in Biology and Medicine, 133, 104383. https://doi.org/10.1016/j.compbiomed.2021.104383
Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 24, 422. https://doi.org/10.1186/s13054-020-03120-0
Niphade, S. R., Asad, M., Chandrakala, G. K., Toppo, E., & Deshmukh, P. (2009). Immunomodulatory activity of Cinnamomum zeylanicum bark. Pharmaceutical Biology, 47(12), 1168-1173. https://doi.org/10.3109/13880200903019234
Ogunyemi, O. M., Gyebi, G. A., Elfiky, A. A., Afolabi, S. O., Ogunro, O. B., Adegunloye, A. P., & Ibrahim, I. M. (2020). Alkaloids and flavonoids from African phytochemicals as potential inhibitors of SARS-Cov-2 RNA-dependent RNA polymerase: an in silico perspective. Antiviral Chemistry and Chemotherapy, 28, 1-15. https://doi.org/10.1177/2040206620984076
Oluyori, A. P., Olanipekun, B. E., Adeyemi, O. S., Egharevba, G. O., Adegboyega, A. E., & Oladeji, O. S. (2022). Molecular docking, pharmacophore modelling, MD simulation and in silico ADMET study reveals bitter cola constituents as potential inhibitors of SARS-CoV-2 main protease and RNA dependent-RNA polymerase. Journal of Biomolecular Structure and Dynamics, 42(4), 1510-1525. https://doi.org/10.1080/07391102.2021.2024883
Oyedara, O. O., Agbedahunsi, J. M., Adeyemi, F. M., Juárez-Saldivar, A., Fadare, O. A., Adetunji, C. O., & Rivera, G. (2021). Computational screening of phytochemicals from three medicinal plants as inhibitors of transmembrane protease serine 2 implicated in SARS-CoV-2 infection. Phytomedicine Plus, 1(4), 100135. https://doi.org/10.1016/j.phyplu.2021.100135
Panda, S. K., Padhi, L., Leyssen, P., Liu, M., Neyts, J., & Luyten, W. (2017). Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Frontiers in Pharmacology, 8, 658. https://doi.org/10.3389/fphar.2017.00658
Pandey, P., Rane, J. S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A., & Ray, S. (2021). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Journal of Biomolecular Structure and Dynamics, 39(16), 6306-6316. https://doi.org/10.1080/07391102.2020.1796811
Pandit, M., & Latha, N. (2020). In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. Research Square, 1-31. https://doi.org/10.21203/rs.3.rs-22687/v1
Parida, P. K., Paul, D., & Chakravorty, D. (2020a). Nature to Nurture- Identifying phytochemicals from Indian medicinal plants as prophylactic medicine by rational screening to be potent against multiple drug targets of SARS-CoV-2. ChemRxiv. https://doi.org/10.26434/chemrxiv.12355937.v1
Parida, P. K., Paul, D., & Chakravorty, D. (2020b). The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS-CoV-2 targets. Phytotherapy Research, 34(12), 3420-3433. https://doi.org/10.1002/ptr.6868
Parida, P. K., Paul, D., & Chakravorty, D. (2021). Nature’s therapy for COVID-19: Targeting the vital non-structural proteins (NSP) from SARS-CoV-2 with phytochemicals from Indian medicinal plants. Phytomedicine Plus, 1(1), 100002. https://doi.org/10.1016/j.phyplu.2020.100002
Patel, C. N., Jani, S. P., Jaiswal, D. G., Kumar, S. P., Mangukia, N., Parmar, R. M., Rawal, R. M., & Pandya, H. A. (2021). Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations. Scientific Reports, 11, 20295. https://doi.org/10.1038/s41598-021-99165-4
Patel, P., & Asdaq, S. M. B. (2010). Immunomodulatory activity of methanolic fruit extract of Aegle marmelos in experimental animals. Saudi Pharmaceutical Journal, 18(3), 161-165. https://doi.org/10.1016/j.jsps.2010.05.006
Paterson, R. W., Brown, R. L., Benjamin, L., Nortley, R., Wiethoff, S., Bharucha, T., Jayaseelan, D. L., Kumar, G., Raftopoulos, R. E., Zambreanu, L., Vivekanandam, V., Khoo, A., Geraldes, R., Chinthapalli, K., Boyd, E., Tuzlali, H., Price, G., Christofi, G., Morrow, J., … Zandi, M. S. (2020). The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain, 143(10), 3104-3120. https://doi.org/10.1093/brain/awaa240
Patil, G. G., Mali, P. Y., & Bhadane, V. V. (2008). Folk remedies used against respiratory disorders in Jalgaon district, Maharashtra. Natural Product Radiance, 7(4), 354-358.
Paul, G. K., Mahmud, S., Aldahish, A. A., Afroze, M., Biswas, S., Gupta, S. B. R., Razu, M. H., Zaman, S., Uddin, M. S., Nahari, M. H., Alshahrani, M. M., Alshahrani, M. A. R., Khan, M., & Saleh, M. A. (2022). Computational screening and biochemical analysis of Pistacia integerrima and Pandanus odorifer plants to find effective inhibitors against Receptor- Binding domain (RBD) of the spike protein of. Arabian Journal of Chemistry, 15(2), 103600. https://doi.org/10.1016/j.arabjc.2021.103600
Phong, N. V., Trang, N. M., Quyen, C. T., Anh, H. L. T., & Vinh, L. B. (2022). SARS-CoV-2 main protease and papain-like protease inhibition by abietane-type diterpenes isolated from the branches of Glyptostrobus pensilis using molecular docking studies. Natural Product Research, 36(24), 6336-6343. https://doi.org/10.1080/14786419.2022.2025801
Qazi, S., Das, S., Khuntia, B. K., Sharma, V., Sharma, S., Sharma, G., & Raza, K. (2021). In Silico Molecular Docking and Molecular Dynamic Simulation Analysis of Phytochemicals From Indian Foods as Potential Inhibitors of SARS-CoV-2 RdRp and 3CLpro. Natural Product Communications, 16(9), 1-12. https://doi.org/10.1177/1934578X211031707
Rabie, A. M. (2022). Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication. ACS Omega, 7(3), 2960-2969. https://doi.org/10.1021/acsomega.1c05998
Rajamanickam, B., Balasubramanian, R., Rajammal, M. Y., Govindaraju, B., Selvaraaju, S. S., Thangarasu, H., & Kadarkarai, K. (2025). Exploring the Potential of Siddha Formulation MilagaiKudineer-Derived Exploring the Potential of Siddha Formulation MilagaiKudineer-Derived Phytotherapeutics Against SARS-CoV-2 : An In-Silico Investigation for Antiviral Intervention. Journal of Pharmacy and Pharmacology Research, 9(2), 17-27. https://doi.org/10.26502/fjppr.0105
Rajchakom, C., Darai, N., Boonma, T., Sungthong, B., Puthongking, P., Nualkaew, S., Sripadung, P., Rungrotmongkol, T., & Nunthaboot, N. (2025). Molecular insights into natural product compounds targeting papain protease of SARS-CoV-2 through molecular dynamics simulation. Monatshefte Fur Chemie - Chemical Monthly, 156, 219-232. https://doi.org/10.1007/s00706-024-03271-8
Rastogi, S., Pandey, D. N., & Singh, R. H. (2020). COVID-19 pandemic: A pragmatic plan for ayurveda intervention. Journal of Ayurveda and Integrative Medicine, 13(1), 100312. https://doi.org/10.1016/j.jaim.2020.04.002
Rodrigues, T., Reker, D., Schneider, P., & Schneider, G. (2016). Counting on natural products for drug design. Nature Chemistry, 8, 531-541. https://doi.org/10.1038/nchem.2479
Ruan, J., Li, Z., Zhang, Y., Chen, Y., Liu, M., Han, L., Zhang, Y., & Wang, T. (2019). Bioactive Constituents from the Roots of Eurycoma longifolia. Molecules, 24(17), 3157. https://doi.org/10.3390/molecules24173157
Rudrapal, M., Celik, I., Khan, J., Ansari, M. A., Alomary, M. N., Alatawi, F. A., Yadav, R., Sharma, T., Tallei, T. E., Pasala, P. K., Sahoo, R. K., Khairnar, S. J., Bendale, A. R., Zothantluanga, J. H., Chetia, D., & Walode, S. G. (2022). Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations. Journal of King Saud University – Science, 34(3), 101826. https://doi.org/10.1016/j.jksus.2022.101826
Saab, A. M., Tacchini, M., Sacchetti, G., Contini, C., Schulz, H., Lampronti, I., Gambari, R., Makhlouf, H., Tannoury, M., Venditti, A., Bianco, A., & Racagni, G. (2021). Phytochemical analysis and potential natural compounds against SARS-CoV-2/COVID-19 in essential oils derived from medicinal plants originating from Lebanon. An information note. Plant Biosystems, 156(4), 855-864. https://doi.org/10.1080/11263504.2021.1932629
Sachan, S., Dhama, K., Latheef, S. K., Samad, H. A., Mariappan, A. K., Munuswamy, P., Singh, R., Singh, K. P., Malik, Y. S., & Singh, R. K. (2019). Immunomodulatory potential of Tinospora cordifolia and CpG ODN (TLR21 agonist) against the very virulent, infectious bursal disease virus in SPF chicks. Vaccines, 7(3), 106. https://doi.org/10.3390/vaccines7030106
Saini, K., & Sharma, S. (2022). Use of Tyrosine Kinase Inhibitors for treating Type 2 Diabetes Mellitus: An appraisal. Chemical Biology Letters, 9(3), 320.
Saini, K., & Sharma, S. (2023). Nanomedicine’s transformative impact on anti-diabetic drug discovery: an appraisal. Journal of Nanoparticle Research, 25, 227. https://doi.org/10.1007/s11051-023-05870-8
Saini, K., & Sharma, S. (2024). QSAR Studies of Sodium/Glucose Co-Transporter 2 Inhibitors as Potent Anti-Diabetic Drug Agents. Theoretical Foundations of Chemical Engineering, 57, S51-S56. https://doi.org/10.1134/S004057952307014X
Saini, K., Khan, Y., & Sharma, S. (2023a). How Effective are Gliflozins as DPP-4 Inhibitors? A Computational Study. Theoretical Foundations of Chemical Engineering, 57, 403-410. https://doi.org/10.1134/S0040579523030168
Saini, K., Sharma, S., & Bhatia, V. (2022). Drug Repurposing and Computational Drug Discovery for Diabetes. Futuristic Trends in Biotechnology, 2, 103-130.
Saini, K., Sharma, S., & Khan, Y. (2023d). DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Frontiers in Molecular Biosciences, 10, 1130625. https://doi.org/10.3389/fmolb.2023.1130625
Saini, K., Sharma, S., Bhatia, V., & Zaidi, S. (2023c). Recent advances in Mass Spectrometry : An appraisal of fundamentals and applications. Journal of Molecular Chemistry, 3(1), 584.
Saini, K., Sharma, S., Bhatia, V., Khan, Y., & Etters, L. (2023b). Dietary Polyphenolics : Mechanistic role in control management of Diabetes and Metabolic Syndrome. Chemical Biology Letters, 10(3), 1-16.
Sampath Kumar, K. P., Bhowmik, D., Chiranjib, Tiwari, P., & Kharel, R. (2010). Indian traditional herbs Adhatoda vasica and its Medicinal application. Journal of Chemical and Pharmaceutical Research, 2(1), 240-245.
Shah, R. R. (2021). Chloroquine and hydroxychloroquine for COVID-19: Perspectives on their failure in repurposing. Journal of Clinical Pharmacy and Therapeutics, 46(1), 17-27. https://doi.org/10.1111/jcpt.13267
Sharma, M. L., Rao, C. S., & Duda, P. L. (1994). Immunostimulatory activity of Picrorhiza kurroa leaf extract. Journal of Ethnopharmacology, 41(3), 185-192. https://doi.org/10.1016/0378-8741(94)90031-0
Sharma, S., & Bhatia, V. (2020a). Drug Design of GLP-1 Receptor Agonists: Importance of In Silico Methods. Current Pharmaceutical Design, 27(8), 1015-1024. https://doi.org/10.2174/1381612826666201118094502
Sharma, S., & Bhatia, V. (2020b). Phytochemicals for Drug Discovery in Alzheimer’s Disease: In Silico Advances. Current Pharmaceutical Design, 27(25), 2848-2860. https://doi.org/10.2174/1381612826666200928161721
Sharma, S., Khan, Y., & Saini, K. (2022). Role of QSAR in filling in the gaps of COVID 19 therapeutics. Pharma Focus Europe.
Sherif, Y. E., Gabr, S. A., Hosny, N. M., Alghadir, A. H., & Alansari, R. (2021). Phytochemicals of Rhus spp. as Potential Inhibitors of the SARS-CoV-2 Main Protease: Molecular Docking and Drug-Likeness Study. Evidence-Based Complementary and Alternative Medicine, 2021, 8814890. https://doi.org/10.1155/2021/8814890
Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2022). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants–Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)–a molecular docking study. Journal of Biomolecular Structure and Dynamics, 40(1), 190-203. https://doi.org/10.1080/07391102.2020.1810778
Singh, A. K., Singh, A., Shaikh, A., Singh, R., & Misra, A. (2020a). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 241-246. https://doi.org/10.1016/j.dsx.2020.03.011
Singh, E., Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020b). A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. Journal of Genetic Engineering and Biotechnology, 18(1), 69. https://doi.org/10.1186/s43141-020-00085-z
Singh, P., Chauhan, S. S., Pandit, S., Sinha, M., Gupta, S., Gupta, A., & Parthasarathi, R. (2021). The dual role of phytochemicals on SARS-CoV-2 inhibition by targeting host and viral proteins. Journal of Traditional and Complementary Medicine, 12(1), 90-99. https://doi.org/10.1016/j.jtcme.2021.09.001
Soleymani, S., Naghizadeh, A., Karimi, M., Zarei, A., Mardi, R., Kordafshari, G., Esmaealzadeh, N., & Zargaran, A. (2022). COVID-19: General Strategies for Herbal Therapies. Journal of Evidence-Based Integrative Medicine, 27, 1-18. https://doi.org/10.1177/2515690x211053641
Srivastav, V. K., Egbuna, C., & Tiwari, M. (2020). Plant secondary metabolites as lead compounds for the production of potent drugs. In C. Egbuna, S. Kumar, J. C. Ifemeje, S. M. Ezzat & S. Kaliyaperumal (Eds.), Phytochemicals as Lead Compounds for New Drug Discovery (pp. 3-14) Amsterdam, Netherlands: Elsevier Inc. https://doi.org/10.1016/B978-0-12-817890-4.00001-9
Srivastava, J. K., Shankar, E., & Gupta, S. (2010). Chamomile: A herbal medicine of the past with a bright future (review). Molecular Medicine Reports, 3(6), 895-901. https://doi.org/10.3892/mmr.2010.377
Sumon, T. A., Hussain, M. A., Hasan, M. T., Hasan, M., Jang, W. J., Bhuiya, E. H., Chowdhury, A. A. M., Sharifuzzaman, S. M., Brown, C. L., Kwon, H.-J., & Lee, E.-W. (2020). A revisit to the research updates of drugs, vaccines and bioinformatics approaches in combating COVID-19 pandemic. Frontiers in Molecular Biosciences, 7, 585899. https://doi.org/10.3389/fmolb.2020.585899
Swain, S. S., Panda, S. K., & Luyten, W. (2021). Phytochemicals against SARS-CoV as potential drug leads. Biomedical Journal, 44(1), 74-85. https://doi.org/10.1016/j.bj.2020.12.002
Swamy, M. K. (2020). Plant-derived Bioactives: Production, Properties and Therapeutic Applications. Singapore: Springer. https://doi.org/10.1007/978-981-15-1761-7
Tahir ul Qamar, M., Alqahtani, S. M., Alamri, M. A., & Chen, L. L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313-319. https://doi.org/10.1016/j.jpha.2020.03.009
Vicidomini, C., Roviello, V., & Roviello, G. N. (2021). In silico investigation on the interaction of chiral phytochemicals from Opuntia ficus-indica with SARS-CoV-2 Mpro. Symmetry, 13(6), 1041. https://doi.org/10.3390/sym13061041
Wadanambi, P. M., Mannapperuma, U., & Jayathilaka, N. (2025). Evaluating phytochemicals as SARS-CoV-2 papain-like protease inhibitors: a docking, ADMET and molecular dynamics investigation. Chemical Papers, 79, 2801-2821. https://doi.org/10.1007/s11696-025-03968-y
WHO. (2019). WHO global report on traditional and complementary medicine 2019. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/312342/9789241515436-eng.pdf?ua=1
Win, N. N., Kodama, T., Lae, K. Z. W., Win, Y. Y., Ngwe, H., Abe, I., & Morita, H. (2019). Bis-iridoid and iridoid glycosides: Viral protein R inhibitors from Picrorhiza kurroa collected in Myanmar. Fitoterapia, 134, 101-107. https://doi.org/10.1016/j.fitote.2019.02.016
Woo, S.-Y., Win, N. N., Noe Oo, W. M., Ngwe, H., Ito, T., Abe, I., & Morita, H. (2019). Viral protein R inhibitors from Swertia chirata of Myanmar. Journal of Bioscience and Bioengineering, 128(4), 445-449. https://doi.org/10.1016/j.jbiosc.2019.04.006
Yanez, N. D., Weiss, N. S., Romand, J.-A., & Treggiari, M. M. (2020). COVID-19 mortality risk for older men and women. BMC Public Health, 20, 1742. https://doi.org/10.1186/s12889-020-09826-8
Yang, R., Liu, H., Bai, C., Wang, Y., Zhang, X., Guo, R., Wu, S., Wang, J., Leung, E., Chang, H., Li, P., Liu, T., & Wang, Y. (2020). Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacological Research, 157, 104820. https://doi.org/10.1016/j.phrs.2020.104820
Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559. https://doi.org/10.3390/molecules21050559
Zaia, M. G., Cagnazzo, T. di O., Feitosa, K. A., Soares, E. G., Faccioli, L. H., Allegretti, S. M., Afonso, A., & Anibal, F. de F. (2016). Anti-inflammatory properties of menthol and menthone in Schistosoma mansoni infection. Frontiers in Pharmacology, 7, 170. https://doi.org/10.3389/fphar.2016.00170
Zeng, F., Huang, Y., Guo, Y., Yin, M., Chen, X., Xiao, L., & Deng, G. (2020). Association of inflammatory markers with the severity of COVID-19: A meta-analysis. International Journal of Infectious Diseases, 96, 467-474. https://doi.org/10.1016/j.ijid.2020.05.055
Zhang, D., Wu, K., Zhang, X., Deng, S., & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18(2), 152-158. https://doi.org/10.1016/j.joim.2020.02.005
Zhang, K. (2020). Is traditional Chinese medicine useful in the treatment of COVID-19? The American Journal of Emergency Medicine, 38(10), 2238. https://doi.org/10.1016/j.ajem.2020.03.046
Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfelld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412. https://doi.org/10.1126/science.abb3405
Zhang, Y., Wang, Z., Zhang, Y., Tong, H., Zhang, Y., & Lu, T. (2020). Potential Mechanisms for Traditional Chinese Medicine in Treating Airway Mucus Hypersecretion Associated With Coronavirus Disease 2019. Frontiers in Molecular Biosciences, 7, 577285. https://doi.org/10.3389/fmolb.2020.577285
Published
How to Cite
Issue
Section
Copyright (c) 2025 Kunika Saini, Smriti Sharma, Vinayak Bhatia, Sheza Zaidi, Jayesh Dhalani

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.