Effects of copper, nickel and lead on growth parameters and antioxidative defense system of Solanum lycopersicum L.

Authors

  • Anjana Kumari Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar-143005, Punjab, India
  • Avinash Kaur Nagpal Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar-143005, Punjab, India
  • Jatinder Kaur Katnoria Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar-143005, Punjab, India

DOI:

https://doi.org/10.25081/cb.2024.v15.8605

Keywords:

Heavy metals, Pollution, Remediation, Tomato, Metal uptake

Abstract

The current study assessed the effects of lead (Pb), copper (Cu), and nickel (Ni) in roots and shoots on growth indices, the antioxidative defense system, and metal uptake in Solanum lycopersicum L. variety Punjab Kesar Cherry. For 60 days, S. lycopersicum seeds were exposed to varying amounts of three metals (0-100 μM of Cu and 0-60 μM of Ni and Pb). In comparison to the control, the percentage of germination, root and shoot length, and fresh and dry weight of the roots and shoots all decreased, according to the results. The bioaccumulation factor of both roots and shoots, along with the translocation factor, increased at lower concentrations and decreased at higher concentrations; for Pb, on the other hand, the translocation factor increased with increasing concentrations. At 60 μM, the order of the bioaccumulation factor was Cu>Ni>Pb for roots, and Cu>Pb>Ni for shoots. The antioxidative enzyme activities, including ascorbate peroxidase (APX), catalase (CAT), dehydro ascorbate reductase (DHAR), glutathione reductase (GR), glutathione S transferase (GST), peroxidase (POD), and superoxide dismutase (SOD), were increased at lower concentrations and decreased at higher concentrations under Cu, Ni, and Pb treatments. The order of toxicity in terms of decrease in protein content was observed as Pb>Ni>Cu for both roots and shoots.

Downloads

Download data is not yet available.

References

Akinci, I. E., Akinci, S., & Yilmaz, K. (2010). Manganese Toxicity on Manganese Accumulation and Mineral Composition of Tomato (Solanum lycopersicum L.). Asian Journal of Chemistry, 22(9), 6991-6997.

Aydin, C., & Marinova, S. (2015). The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulgarian Journal of Agricultural Science, 15(4), 347-350.

Baruah, N., Mondal, S. C., Farooq, M., & Gogoi, N. (2019). Influence of heavy metals on seed germination and seedling growth of wheat, pea, and tomato. Water, Air, & Soil Pollution, 230, 273. https://doi.org/10.1007/s11270-019-4329-0

Bhattacharyya, S., Jinschek, J. R., Cao, H., Wang, Y. U., Li, J., & Viehland, D. (2008). Direct high-resolution transmission electron microscopy observation of tetragonal nanotwins within the monoclinic MC phase of Pb (Mg 1∕ 3 Nb 2∕ 3) O 3-0.35 Pb Ti O 3 crystals. Applied Physics Letters, 92(14), 142904. https://doi.org/10.1063/1.2908228

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

Carlberg, I., & Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry, 250(14), 5477-5480. https://doi.org/10.1016/S0021-9258(19)41206-4

Claiborne, A. (1985). Catalase Activity. In R. A. Greenwald (Eds.), Handbook of Methods for Oxygen Radical Research (pp. 283-284) Florida, US: CRC Press Inc.

Devi, P., & Kumar, P. (2020). Concept and application of phytoremediation in the fight of heavy metal toxicity. Journal of Pharmaceutical Sciences and Research, 12(6), 795-804.

Di Salvatore, M., Carafa, A. M., & Carratu, G. (2008). Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, 73(9), 1461-1464. https://doi.org/10.1016/j.chemosphere.2008.07.061

Dong, J., Wu, F., & Zhang, G. (2006). Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere, 64(10), 1659-1666. https://doi.org/10.1016/j.chemosphere.2006.01.030

Ekta, P., & Modi, N. R. (2018). A review of phytoremediation. Journal of Pharmacognosy and Phytochemistry, 7(4), 1485-1489.

Fahr, M., Laplaze, L., Bendaou, N., Hocher, V., Mzibri, M. E., Bogusz, D., & Smouni, A. (2013). Effect of lead on root growth. Frontiers in Plant Science, 4, 175. https://doi.org/10.3389/fpls.2013.00175

Freeman, J. L., Persans, M. W., Nieman, K., Albrecht, C., Peer, W., Pickering, I. J., & Salt, D. E. (2004). Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. The Plant Cell, 16(8), 2176-2191. https://doi.org/10.1105/tpc.104.023036

Gajewska, E., & Sklodowska, M. (2008). Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regulation, 54, 179-188. https://doi.org/10.1007/s10725-007-9240-9

Georgiadou, E. C., Kowalska, E., Patla, K., Kulbat, K., Smolińska, B., Leszczyńska, J., & Fotopoulos, V. (2018). Influence of heavy metals (Ni, Cu, and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) plants. Frontiers in Plant Science, 9, 862. https://doi.org/10.3389/fpls.2018.00862

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8

Hana, S., Rachid, R., Ibtissem, S., Houria, B., & Mohammed-Réda, D. (2008). Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum). African Journal of Plant Science, 2(8), 72-76. https://doi.org/10.5897/AJPS.9000146

Harasim, P., & Filipek, T. (2015). Nickel in the environment. Journal of Elementology, 20(2), 525-534. https://doi.org/10.5601/jelem.2014.19.3.651

Hossain, M. A., & Asada, K. (1984). Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant and Cell Physiology, 25(1), 85-92. https://doi.org/10.1093/oxfordjournals.pcp.a076700

Hussain, A., Abbas, N., Arshad, F., Akram, M., Khan, Z. I., Ahmad, K., Mansha, M., & Mirzaei, F. (2013). Effects of diverse doses of Lead (Pb) on different growth attributes of Zea-Mays L. https://doi.org/10.4236/as.2013.45037

Irshad, M. S., Arshad, N., Wang, X., Li, H. R., Javed, M. Q., Xu, Y., Alsharani, L. A., & Li, J. (2021). Intensifying Solar Interfacial Heat Accumulation for Clean Water Generation Excluding Heavy Metal Ions and Oil Emulsions. Solar RRL, 5(11), 2100427. https://doi.org/10.1002/solr.202100427

Israr, M., Jewell, A., Kumar, D., & Sahi, S. V. (2011). Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. Journal of Hazardous Materials, 186(2-3), 1520-1526. https://doi.org/10.1016/j.jhazmat.2010.12.021

Jaja, E. T, & Odoemena, C. S. I. (2004). Effect of Pb, Cu and Fe compounds on the germination and early seedling growth of tomato varieties. Journal of Applied Sciences and Environmental Management, 8(2), 51-53. https://doi.org/10.4314/jasem.v8i2.17240

Kevresan, S., Petrovic, N., Popovic, M., & Kandrac, J. (2001). Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead, and molybdenum. Journal of Plant Nutrition, 24(10), 1633-1644. https://doi.org/10.1081/PLN-100106026

Khan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research, 22, 13772-13799. https://doi.org/10.1007/s11356-015-4881-0

Kono, Y. (1978). Generation of superoxide radicals during auto-oxidation of hydroxyl-amine hydrochloride an assay for SOD. Achieves of Biochemistry and Biophysics, 186(1), 189-195. https://doi.org/10.1016/0003-9861(78)90479-4

Kumar, A. (2020). Inorganic soil contaminants and their biological remediation. In P. Singh, S. K. Singh & S. M. Prasad (Eds.), Plant Responses to Soil Pollution (pp. 133-153) Singapore: Springer. https://doi.org/10.1007/978-981-15-4964-9_8

Kumar, M., Chandran, D., Tomar, M., Bhuyan, D. J., Grasso, S., Sá, A. G. A., Carciofi, B. A. M., Radha, Dhumal, S., Singh, S., Senapathy, M., Changan, S., Dey, A., Pandiselvam, R., Mahato, D. K., Amarowicz, R., Rajalingam, S., Vishvanathan, M., Saleena, L. A. K., & Mekhemar, M. (2022). Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods. Horticulturae, 8(3), 265. https://doi.org/10.3390/horticulturae8030265

Liu, D., Li, T.-Q., Jin, X.-F., Yang, X.-E., Islam, E., & Mahmood, Q. (2008). Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. Journal of Integrative Plant Biology, 50(2), 129-140. https://doi.org/10.1111/j.1744-7909.2007.00608.x

Llamas, A., Ullrich, C. I., & Sanz, A. (2008). Ni2+ toxicity in rice: effect on membrane functionality and plant water content. Plant Physiology and Biochemistry, 46(10), 905-910. https://doi.org/10.1016/j.plaphy.2008.05.006

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin-phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Maheshwari, R., & Dubey, R. S. (2009). Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regulation, 59, 37-49. https://doi.org/10.1007/s10725-009-9386-8

Marchiol, L., Sacco, P., Assolari, S., & Zerbi, G. (2004). Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water, Air, and Soil Pollution, 158, 345-356. https://doi.org/10.1023/B:WATE.0000044862.51031.fb

Mishra, S., Srivastava, S., Tripathi, R. D., Govindarajan, R., Kuriakose, S. V., & Prasad, M. N. V. (2006). Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry, 44(1), 25-37. https://doi.org/10.1016/j.plaphy.2006.01.007

Moreira, I. N., Martins, L. L., & Mourato, M. P. (2020). Effect of Cd, Cr, Cu, Mn, Ni, Pb and Zn on seed germination and seedling growth of two lettuce cultivars (Lactuca sativa L.). Plant Physiology Reports, 25, 347-358. https://doi.org/10.1007/s40502-020-00509-5

Nada, E., Ferjani, B. A., Ali, R., Bechir, B. R., Imed, M., & Makki, B. (2007). Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiologiae Plantarum, 29, 57-62. https://doi.org/10.1007/s11738-006-0009-y

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

Ozdener, Y., & Kutbay, H. G. (2009). Toxicity of copper, cadmium, nickel, lead and zinc on seed germination and seedling growth in Eruca sativa. Fresenius Environmental Bulletin, 18(1), 26-31.

Raiola, A., Rigano, M. M., Calafiore, R., Frusciante, L., & Barone, A. (2014). Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators of Inflammation, 2014, 139873. https://doi.org/10.1155/2014/139873

Rezvani, M., & Zaefarian, F. (2011). Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Australian Journal of Agricultural Engineering, 2(4), 114-119.

Saleem, M. H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, S., Shafiq, F., Iqbal, M., Alharbi, B. M., Alnusaire, T. S., & Qari, S. H. (2020). Jute: A potential candidate for phytoremediation of metals—A review. Plants, 9(2), 258. https://doi.org/10.3390/plants9020258

Sánchez, M., Revilla, G., & Zarra, I. (1995). Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Annals of Botany, 75(4), 415-419. https://doi.org/10.1006/anbo.1995.1039

Sen, A., Shukla, K. K., Singh, S., & Tejovathi, G. (2013). Impact of heavy metals on root and shoot length of Indian mustard: an initial approach for phytoremediation. Science Secure Journal of Biotechnology, 2(2), 48-55.

Sharma, A., Soares, C., Sousa, B., Martins, M., Kumar, V., Shahzad, B., Sidhu, G. P. S., Bali, A. S., Asgher, M., Bhardwaj, R., Thukral, A. K., Fidalgo, F., & Zheng, B. (2020). Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiologia Plantarum, 168(2), 318-344. https://doi.org/10.1111/ppl.13004

Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. https://doi.org/10.1590/S1677-04202005000100004

Shu, X., Yin, L., Zhang, Q., & Wang, W. (2012). Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environmental Science and Pollution Research, 19, 893-902. https://doi.org/10.1007/s11356-011-0625-y

Singh, N., Kaur, M., & Katnoria, J. K. (2017). Analysis on bioaccumulation of metals in aquatic environment of Beas River Basin: A case study from Kanjli wetland. GeoHealth, 1(3), 93-105. https://doi.org/10.1002/2017GH000062

Stancheva, I., Geneva, M., Markovska, Y., Tzvetkova, N., Mitova, I., Todorova, M., & Petrov, P. (2014). A comparative study on plant morphology, gas exchange parameters, and antioxidant response of Ocimum basilicum L. and Origanum vulgare L. grown on industrially polluted soil. Turkish Journal of Biology, 38(1), 89-102. https://doi.org/10.3906/biy-1304-94

Thomas, J. C., Malick, F. K., Endreszl, C., Davies, E. C., & Murray, K. S. (1998). Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiologia Plantarum, 102(3), 360-368. https://doi.org/10.1034/j.1399-3054.1998.1020304.x

Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164(4), 645-655. https://doi.org/10.1016/S0168-9452(03)00022-0

Wang, Y., Li, L., Ye, T., Zhao, S., Liu, Z., Feng, Y. Q., & Wu, Y. (2011). Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. The Plant Journal, 68(2), 249-261. https://doi.org/10.1111/j.1365-313X.2011.04683.x

Warchoł, M., Juzoń, K., Dziurka, K., Czyczyło-Mysza, I., Kapłoniak, K., Marcinska, I., & Skrzypek, E. (2021). The effect of zinc, copper, and silver ions on oat (Avena sativa L.) androgenesis. Plants, 10(2), 248. https://doi.org/10.3390/plants10020248

Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069-4075. https://doi.org/10.1021/jf060300l

Xiong, Z.-T. (1998). Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bulletin of Environmental Contamination and Toxicology, 60, 285-291. https://doi.org/10.1007/s001289900623

Yadav, S. K. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167-179. https://doi.org/10.1016/j.sajb.2009.10.007

Yilmaz, D. D., & Parlak, K. U. (2011). Nickel-induced changes in lipid peroxidation, antioxidative enzymes, and metal accumulation in Lemna gibba. International Journal of Phytoremediation, 13(8), 805-817. https://doi.org/10.1080/15226514.2010.525563

Zhao, H., & Yang, H. (2008). Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Scientia Horticulturae, 116(4), 442-447. https://doi.org/10.1016/j.scienta.2008.02.017

Published

08-05-2024

How to Cite

Kumari, A., Nagpal, A. K., & Katnoria, J. K. (2024). Effects of copper, nickel and lead on growth parameters and antioxidative defense system of Solanum lycopersicum L. Current Botany, 15, 58–69. https://doi.org/10.25081/cb.2024.v15.8605

Issue

Section

Regular Articles