GC-MS and molecular docking analysis of Kodo millet (Paspalum scrobiculatum) identifying the compounds with anti-diabetic potential
DOI:
https://doi.org/10.25081/cb.2023.v14.8432Keywords:
Kodo millet, GC-MS analysis, α-amylase inhibition, Antidiabetic Potential, Molecular dockingAbstract
Kodo millet (Paspalum scrobiculatum) is a nutritionally superior grain and a rich source of dietary fiber and protein. It helps in managing health and dietary issues such as malnutrition, diabetes, obesity, and celiac disease. Its low content of slowly digestible carbohydrates promotes a gradual release of glucose, helping to maintain stable blood glucose levels. The present study aims to screen and identify phytochemicals in kodo millet and to explore its antidiabetic properties through GC-MS and in silico molecular docking analyses. GC-MS-based metabolomics analysis was conducted to identify a diverse array of metabolites present in four different kodo millet cultivars, yielding 245 metabolites. A GC-MS-based metabolomics analysis identified 245 metabolites across four kodo millet cultivars. Subsequent pathway and enrichment analyses of these metabolites revealed several significantly enriched metabolic pathways, including fatty acid biosynthesis; amino sugar and nucleotide sugar metabolism; cysteine and methionine metabolism; phenylpropanoid biosynthesis; terpenoid backbone biosynthesis; starch and sucrose metabolism; and valine, leucine, and isoleucine biosynthesis. Further investigation into the pharmacological properties of these metabolites, followed by molecular docking analysis against α-amylase, revealed that several compounds possess antidiabetic activity. Collectively, our results demonstrate the basis of kodo millet’s therapeutic potential, adding a layer of health-related significance to its consumption.
Downloads
References
Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., Zhao, C., Xiao, J., Hafez, E. E., & Khan, S. A. (2022). Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Frontiers in Endocrinology, 13, 800714. https://doi.org/10.3389/fendo.2022.800714
Aye, M. M., Aung, H. T., Sein, M. M., & Armijos, C. (2019). A review on the phytochemistry, medicinal properties and pharmacological activities of 15 selected Myanmar medicinal plants. Molecules, 24(2), 293. https://doi.org/10.3390/molecules24020293
Azzi, A. (2019). Tocopherols, tocotrienols and tocomonoenols: Many similar molecules but only one vitamin E. Redox Biology, 26, 101259. https://doi.org/10.1016/j.redox.2019.101259
Batta, A. K., Xu, G., Honda, A., Miyazaki, T., & Salen, G. (2006). Stigmasterol reduces plasma cholesterol levels and inhibits hepatic synthesis and intestinal absorption in the rat. Metabolism, 55(3), 292-299. https://doi.org/10.1016/j.metabol.2005.08.024
Blahova, J., Martiniakova, M., Babikova, M., Kovacova, V., Mondockova, V., & Omelka, R. (2021). Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals, 14(8), 806. https://doi.org/10.3390/ph14080806
Bunkar, D. S., Goyal, S., Meena, K. K., & Kamalvanshi, V. (2021). Nutritional, functional role of kodo millet and its processing: a review. International Journal of Current Microbiology and Applied Sciences, 10(01), 1972-1985. https://doi.org/10.20546/ijcmas.2021.1001.229
Chaudhary, J. K., & Mudgal, S. (2020). Antidiabetic and hypolipidaemic action of finger millet (Eleusine coracana)-enriched probiotic fermented milk: An in vivo rat study. Food Technology and Biotechnology, 58(2), 192. https://doi.org/10.17113/ftb.58.02.20.6308
Chethan, S., Dharmesh, S. M., & Malleshi, N. G. (2008). Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorganic & Medicinal Chemistry, 16(23), 10085-10090. https://doi.org/10.1016/j.bmc.2008.10.003
Deepak, Teggelli, R. G., & Thakur, V. (2018). Minor millets-their potential health benefits and medicinal properties: A review. International Journal of Pure & Applied Bioscience, 6(1), 1677. https://doi.org/10.18782/2320-7051.6466
Djoumbou Feunang, Y., Eisner, R., Knox, C., Chepelev, L., Hastings, J., Owen, G., Fahy, E., Steinbeck, C., Subramanian, S., & Bolton, E. (2016). ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics, 8, 1-20. https://doi.org/10.1186/s13321-016-0174-y
Fiehn, O. (2016). Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology, 114(1), 30.4.1-30.4.32. https://doi.org/10.1002/0471142727.mb3004s114
Ihara, Y., Yamada, Y., Toyokuni, S., Ban, N., Kuroe, A., & Seino, Y. (2000). Antioxidant [Alpha]-Tocopherol Improves Glycemic Control of GK Rats, a Model of Type 2 Diabetes. Diabetes, 49(5), A429-A429. https://doi.org/10.1016/s0014-5793(00)01489-7
Kaur, J., Dhiman, V., Bhadada, S., Katare, O., & Ghoshal, G. (2022). LC/MS guided identification of metabolites of different extracts of Cissus quadrangularis. Food Chemistry Advances, 1, 100084. https://doi.org/10.1016/j.focha.2022.100084
Krishnan, V., Verma, P., Saha, S., Singh, B., Vinutha, T., Kumar, R., Kulshreshta, A., Singh, S., Sathyavathi, T., & Sachdev, A. (2022). Polyphenol-enriched extract from pearl millet (Pennisetum glaucum) inhibits key enzymes involved in post prandial hyper glycemia (α-amylase, α-glucosidase) and regulates hepatic glucose uptake. Biocatalysis and Agricultural Biotechnology, 43, 102411. https://doi.org/10.1016/j.bcab.2022.102411
Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry–based metabolite profiling in plants. Nature Protocols, 1(1), 387-396. https://doi.org/10.1038/nprot.2006.59
Mishra, V., Tomar, S., Yadav, P., Vishwakarma, S., & Singh, M. P. (2022). Elemental analysis, phytochemical screening and evaluation of antioxidant, antibacterial and anticancer activity of Pleurotus ostreatus through in vitro and in silico approaches. Metabolites, 12(9), 821. https://doi.org/10.3390/metabo12090821
Oboh, G., Agunloye, O. M., Adefegha, S. A., Akinyemi, A. J., & Ademiluyi, A. O. (2015). Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. Journal of Basic and Clinical Physiology and Pharmacology, 26(2), 165-170. https://doi.org/10.1515/jbcpp-2013-0141
Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P.-É., Li, S., & Xia, J. (2021). MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49(W1), W388-W396. https://doi.org/10.1093/nar/gkab382
Prabhakar, P. K., & Doble, M. (2008). A target based therapeutic approach towards diabetes mellitus using medicinal plants. Current Diabetes Reviews, 4(4), 291-308. https://doi.org/10.2174/157339908786241124
Reddy, B. V., Reddy, C., Sekhar, A. C., Reddy, P. C. O., & Srinivasulu, K. (2021). A new insights and novel targets for hyperglycemia from foxtail millet (Setaria italica L.) using molecular docking studies. Current Trends in Biotechnology and Pharmacy, 15(2), 213-219. https://doi.org/10.5530/ctbp.2021.2.23
Reiter, E., Jiang, Q., & Christen, S. (2007). Anti-inflammatory properties of α-and γ-tocopherol. Molecular Aspects of Medicine, 28(5-6), 668-691. https://doi.org/10.1016/j.mam.2007.01.003
Shah, S. B., Sartaj, L., Ali, F., Shah, S. I. A., & Khan, M. T. (2018). Plant extracts are the potential inhibitors of α-amylase: a review. MOJ Bioequiv Availab, 5(5), 270-273. https://doi.org/10.15406/mojbb.2018.05.00113
Shobana, S., Sreerama, Y., & Malleshi, N. (2009). Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chemistry, 115(4), 1268-1273. https://doi.org/10.1016/j.foodchem.2009.01.042
Singh, V., Lee, G., Son, H., Amani, S., Baunthiyal, M., & Shin, J.-H. (2022). Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: A case of finger millet. Frontiers in Nutrition, 9, 1056445. https://doi.org/10.3389/fnut.2022.1056445
Tran, N., Pham, B., & Le, L. (2020). Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology, 9(9), 252. https://doi.org/10.3390/biology9090252
Published
How to Cite
Issue
Section
Copyright (c) 2025 Senthil Natesan, Infant Richard Joseph Louis, Suganya Balan, Vaithiyalingan Mallaian, Meenakshi Periasamy, Saranya Nallusamy, Karthikeyan Adhimoolam

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.