Optimization of stable genetic transformation protocol in castor (Ricinus communis L. cv. TMV 5) using beta glucuronidase reporter gene for pioneer of desirable genes

Authors

  • K. Ganesh Kumari Department of Botany, Srimad Andavan Arts and Science College (Autonomous), Srirangam, Tiruvanaikoil, Tiruchirappalli-620005, Tamil Nadu, India
  • N. Jayabalan Department of Botany, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India

DOI:

https://doi.org/10.25081/cb.2024.v15.8318

Keywords:

Histochemical GUS assay, Ricinus communis, Southern hybridization, Agrobacterium tumefaciens, β-Glucuronidase, Polymerase Chain reaction

Abstract

The simple and stable protocol was standardised for castor (Ricinus communis L. cv. TMV 5) genetic transformation using Agrobacterium tumefaciens strain LBA4404 harbouring the binary plasmid pBAL2 (18.8 kb). Cotyledonary nodes from ten days old, in vivo seedlings were utilized as target cells for Agrobacterium mediated transformation. Explant pre-culture studies were carried out at 2, 4, 6, 8, 10 and 12 day intervals. The 4th day old explants cultivated on mMS medium (MS medium+B5 Vitamins) using plant growth regulators had the highest response percentage (50.6%). Kanamycin (0-175 mg/L) and Hygromycin (0-13 mg/L) sensitivity in well-developed shoots was investigated. Of the two antibiotics, Kanamycin 50 mg/L and Hygromycin 3 mg/L was found optimum. Different levels of acetosyringone (0-200 mg/L) were used in the co-cultivation medium to study the transformation efficiency of castor. Among the different concentrations, maximum number of explants showed GUS expression at 100 mg/L of acetosyringone in the co-cultivation medium at 2 days of co-cultivation period and the Cotyledonary node produced multiple shoots development and plantlet establishment in 0.3 mg/L TDZ, 0.6 mg/L PF-68, kanamycin 50 mg/L, 0.3 mg/L GA3, 1.5 mg/L IBA and 0.6 mg/L AgNO3. The rooted shoots were successfully acclimatized. Histochemical GUS assay was used to monitor T-DNA delivery into the target cells. PCR and Southern hybridization were used to confirm the transformants with the NPT II and GUS gene. A very high frequency (29.3%) of β-glucuronidase (GUS) gene expression was obtained through Agrobacterium-mediated gene transfer into cotyledonary node explants of Castor. The standardized protocol would be useful for Agrobacterium-mediated genetic transformation of Cator with desirable gene of agronomic importance.

Downloads

Download data is not yet available.

References

Ahansal, K., Abdelwahd, R., Udupa, S. M., Aadel, H., Gaboun, F., Ibriz, M., & Iraqi, D. (2022). Effect of type of mature embryo explants and acetosyringone on agrobacterium-mediated transformation of moroccan durum wheat. Bioscience Journal, 38, e38007. https://doi.org/10.14393/BJ-v38n0a2022-54513

Alibert, B., Lucas, O., Le Gall, V., Kallerhoff, J., & Alibert, G. (1999). Pectolytic enzyme treatment of sunflower explants prior to wounding and cocultivation with Agrobacterium tumefaciens, enhances efficiency of transient β‐glucuronidase expression. Physiologia Plantarum, 106(2), 232-237. https://doi.org/10.1034/j.1399-3054.1999.106213.x

An, G., Evert, P. R., Mitra, A., & Ha, S. B. (1988). Binary vectors. In S. B. Gelvin, R. A. Schilperoort & D. P. S. Verma (Eds.), Plant Molecular Biology Manual A3 (pp. 29-47) Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-94-009-0951-9_3

Asande, L. K., Omwoyo, R. O., Oduor, R. O., & Nyaboga, E. N. (2020). A simple and fast Agrobacterium-mediated transformation system for passion fruit KPF4 (Passiflora edulis f. edulis × Passiflora edulis f. flavicarpa). Plant Methods, 16, 141. https://doi.org/10.1186/s13007-020-00684-4

Athma, P., & Reddy, T. P. (1983). Efficiency of callus initiation and direct regeneration from different explants of castor (Ricinus communis L.). Current Science, 52(6), 256-257.

Bautista-Montes, E., Hernández-Soriano, L., & Simpson, J. (2022). Advances in the micropropagation and genetic transformation of Agave species. Plants, 11(13), 1757. https://doi.org/10.3390/plants11131757

Bevan, M. (1984). Binary Agrobacterium vectors for plant transformation. Nucleic Acids Research, 12(22), 8711-8721. https://doi.org/10.1093/nar/12.22.8711

Bibi, N., Fan, K., Yuan, S., Ni, M., Ahmed, I. M., Malik, W., & Wang, X. (2013). An efficient and highly reproducible approach for the selection of upland transgenic cotton produced by pollen tube pathway method. Australian Journal of Crop Science, 7(11), 1714-1722.

Burrus, M., Molinier, J., Himber, C., Hunold, R., Bronner, R., Rousselin, P., & Hahne, G. (1996). Agrobacterium mediated transformation of Sunflower (Helianthus annuus L) shoot apices: transformation patterns. Molecular Breeding, 2, 329-338. https://doi.org/10.1007/BF00437911

Cesarone, C. F., Bolognesi, C., & Santi, L. (1979). Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Analytical Biochemistry, 100(1), 188-197. https://doi.org/10.1016/0003-2697(79)90131-3

D'Aoust, M.-A., Nguyen-Quoc, B., Le, V.-Q., & Yelle, S. (1999). Upstream regulatory regions from the maize Sh1 promoter confer tissue-specific expression of the,-glucuronidase gene in tomato. Plant Cell Reports, 18, 803-808. https://doi.org/10.1007/s002990050665

Davis, S. J., & Vierstra, R. D. (1998). Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Molecular Biology, 36, 521-528. https://doi.org/10.1023/A:1005991617182

De Cleene, M., & De Ley, J. (1976). The host range of crown gall. The Botanical Review, 42, 389-466. https://doi.org/10.1007/BF02860827

Deguchi, M., Bogush, D., Weeden, H., Spuhler, Z., Potlakayala, S., Kondo, T., Zhang, Z. J., & Rudrabhatla, S. (2020). Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Scientific Reports, 10, 3504. https://doi.org/10.1038/s41598-020-60323-9

Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.

Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19(6), 1349. https://doi.org/10.1093/nar/19.6.1349

Finnegan, J., & McElroy, D. (1994). Transgene inactivation: plants fight back. Nature Biotechnology, 12, 883-888. https://doi.org/10.1038/nbt0994-883

Fraley, R. T., Rogers, S. G., Horsch, R. B., & Gelvin, S. B. (1986). Genetic transformation in higher plants. Critical Reviews in Plant Sciences, 4(1), 1-46. https://doi.org/10.1080/07352688609382217

Haider, S., Gao, Y., & Gao, Y. (2020). Standardized genetic transformation protocol for Chrysanthemum cv.‘Jinba’ with TERMINAL FLOWER 1 homolog CmTFL1a. Genes, 11(8), 860. https://doi.org/10.3390/genes11080860

Hiei, Y., & Komari, T. (2006). Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 85, 271-283. https://doi.org/10.1007/s11240-005-9069-8

Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6, 3901-3907. https://doi.org/10.1002/j.1460-2075.1987.tb02730.x

Jogam, P., Sandhya, D., Alok, A., Shekhawat, M. S., Peddaboina, V., Singh, K., & Allini, V. R. (2022). Agrobacterium-mediated genetic transformation and cloning of candidate reference genes in suspension cells of Artemisia pallens Wall. ex DC. 3 Biotech, 12, 194. https://doi.org/10.1007/s13205-022-03251-x

Kazemi, E. M., Jonoubi, P., Majd, A., & Pazhouhandeh, M. (2014). Reduction of negative effects of cefotaxime in tomato transformation by using FeEDDHA. International Journal of Farming and Allied Sciences, 3(5), 538-542.

Kohli, A., Leech, M., Vain, P., Laurie, D. A., & Christou, P. (1998). Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proceedings of the National Academy of Sciences, 95(12), 7203-7208. https://doi.org/10.1073/pnas.95.12.7203

Kulathuran, G. K., & Narayanasamy, J. (2015). A comparative study of PGRs and Pluronic F68, a surfactant on in vitro regeneration of castor (Ricinus communis L.) using shoot tip and cotyledonary node explant. International Journal of Current Biotechnology, 3(9), 1-14.

Li, L.-C., Qin, G.-J., Tsuge, T., Hou, X.-H., Ding, M.-Y., Aoyama, T., Oka, A., Chen, Z., Gu, H., Zhao, Y., & Qu, L.-J. (2008). SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 179(3), 751-764. https://doi.org/10.1111/j.1469-8137.2008.02514.x

Li, M. R., Li, H. Q., & Wu, G. J. (2006). Study on factors influencing Agrobacterium-mediated transformation of Jatropha curcas. Fen Zi Xi Bao Sheng Wu Xue Bao Journal of Molecular Cell Biology, 39(1), 83-89.

Liu, Z., & Binns, A. N. (2003). Functional subsets of the VirB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. Journal of Bacteriology, 185(11), 3259-3269. https://doi.org/10.1128/jb.185.11.3259-3269.2003

Lopez, S. J., Kumar, R. R., Pius, P. K., & Muraleedharan, N. (2004). Agrobacterium tumefaciens-mediated genetic transformation in tea (Camellia sinensis [L.] O. Kuntze). Plant Molecular Biology Reporter, 22, 201-202. https://doi.org/10.1007/BF02772730

Lu, C., & Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Reports, 27, 273-278. https://doi.org/10.1007/s00299-007-0454-0

Malathi, B., Ramesh, S., Rao, K. V., & Reddy, V. D. (2006). Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica, 147, 441-449. https://doi.org/10.1007/s10681-005-9043-x

Maniatis, T., Fritsh, E. F., & Sambrook, J. (1982). Molecular cloning A Laboratory Manual. New York US: Cold spring Harbor Laboratory.

McHughen, A., Jordan, M., & Feist, G. (1989). A preculture period prior to Agrobacterium inoculation increases production of transgenic plants. Journal of Plant Physiology, 135(2), 245-248. https://doi.org/10.1016/S0176-1617(89)80187-7

McKeon, T. A., & Chen, G. Q. (2003). Transformation of Ricinus communis, the castor plant. Patent No.: US 6,620,986 B1.

Molina, S. M., & Schobert, C. (1995). Micropropagation of Ricinus communis. Journal of Plant Physiology, 147(2), 270-272. https://doi.org/10.1016/S0176-1617(11)81517-8

Müller, A., Iser, M., & Hess, D. (2001). Stable transformation of sunflower (Helianthus annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker. Transgenic Research, 10, 435-444. https://doi.org/10.1023/A:1012029032572

Naing, A. H., Ai, T. N., Jeon, S. M., Park, K. I., Lim, S. H., Lim, K. B., & Kim, C. K. (2016). Novel antibiotics and genetic transformation with RsMYB1 gene of recalcitrant Chrysanthemum cv. ‘Shinma’. Plant Biosystems, 15, 98-107. https://doi.org/10.1080/11263504.2015.1103800

Pandey, A. K., Bhat, B. V., Balakrishna, D., & Seetharama, N. (2010). Genetic transformation of sorghum (Sorghum bicolor (L.) Moench.). International Journal of Biotechnology and Biochemistry, 6(1), 45-53.

Potrykus, I. (1991). Gene transfer to plants: assessment of published approaches and results. Annual Review of Plant Biology, 42, 205-225. https://doi.org/10.1146/annurev.pp.42.060191.001225

Reddy, K. R. K., Rao, G. P., & Bahadur, B. (1987). In vitro morphogenesis from seedling explants and callus cultures of castor (Ricinus communis L.). Phytomorphology, 37(4), 337-340.

Romano, A., Noronha, C., & Martins-Loucao, M. A. (1995). Role of carbohydrates in micropropagation of cork oak. Plant Cell, Tissue and Organ Culture, 40, 159-167. https://doi.org/10.1007/BF00037670

Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A laboratory manual. (3rd ed.). New York, US: Cold Spring Harbor Laboratory Press.

Sangduen, N., Pongtongkam, P., Ratisoontorn, P., Jampatas, R., Suputtitada, S., & Khumsub, S. (1987). Tissue culture and plant regeneration of castor (Ricinus communis L.). SABRAO Journal, 19, 144.

Schrammeijer, B., Sijmons, P. C., van den Elzen, P. J. M., & Hoekema, A. (1990). Meristem transformation of sunflower via Agrobacterium. Plant Cell Reports, 9, 55-60. https://doi.org/10.1007/BF00231548

Sharma, K. K., Bhatnagar-Mathur, P., & Thorpe, T. A. (2005). Genetic transformation technology: status and problems. In Vitro Cellular & Developmental Biology-Plant, 41, 102-112. https://doi.org/10.1079/IVP2004618

Songstad, D. D., De Luca, V., Brisson, N., Kurz, W. G. W., & Nessler, C. L. (1990). High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase. Plant Physiology, 94(3), 1410-1413. https://doi.org/10.1104/pp.94.3.1410

Su, W., Xu, M., Radani, Y., & Yang, L. (2023). Technological development and application of plant genetic transformation. International Journal of Molecular Sciences, 24(13), 10646. https://doi.org/10.3390/ijms241310646

Sudhakar, B., Ganapathi, A., Prema, S., & Manickavasagam, M. (2006). Agrobacterium mediated Genetic transformation studies in Sugar cane (Saccharum officinarum L.) using axillary bud as target tissue. In N. Jayabalan (Eds.), Plant Biotechnology (pp. 29-40) New Delhi, India: APH publishing corporation.

Sujatha, M., & Reddy, T. P. (1998). Differential cytokinin effects on the stimulation of in vitro shoot proliferation from meristematic explants of castor (Ricinus communis L.). Plant Cell Reports, 17, 561-566. https://doi.org/10.1007/s002990050442

Sujatha, M., & Tarakeswari, M. (2018). Biotechnological means for genetic improvement in castor bean as a crop of the future. In C. Kole & P. Rabinowicz (Eds.), The Castor Bean Genome (pp. 255-272) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-97280-0_14

Sujatha, M., Sailaja, M. (2007, January). Development of transgenic castor for insect resistance. In Extended Summaries of the National Seminar on Changing Global Vegetable Oils Scenario: Issues and Challenges before India, Hyderabad, India (pp. 7-8).

Taylor, N. J., & Fauquet, C. M. (2002). Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA and Cell Biology, 21(12), 963-977. https://doi.org/10.1089/104454902762053891

Tiwari, N. N., Singh, R. K., & Singh, S. P. (2018). Impact of cefotaxime on Agrobacterium mediated BT gene transformation in sugarcane. Journal of Pharmacognosy and Phytochemistry, 7(2), 3952-3955.

Valvekens, D., Montagu, M. V., & Lijsebettens, M. V. (1988). Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Sciences, 85(15), 5536-5540. https://doi.org/10.1073/pnas.85.15.5536

Vanjildorj, E., Bae, T.-W., Riu, K.-Z., Yun, P.-Y., Park, S.-Y., Lee, C.-H., Kim, S.-Y., & Lee, H.-Y. (2006). Transgenic Agrostis mongolica Roshev. with enhanced tolerance to drought and heat stresses obtained from Agrobacterium-mediated transformation. Plant Cell, Tissue and Organ Culture, 87, 109-120. https://doi.org/10.1007/s11240-006-9143-x

Vasudevan, A., Ganapathi, A., Selvaraj, N., & Vengadesan, G. (2002). Factors Influencing GUS Expression in Cucumber (Cucumis sativus Linn.). Indian Journal of Biotechnology, 1, 344-349.

Veluthambi, K., Krishnan, M., Gould, J. H., Smith, R. H., & Gelvin, S. B. (1989). Opines stimulate induction of the vir genes of the Agrobacterium tumefaciens Ti plasmid. Journal of Bacteriology, 171(7), 3696-3703. https://doi.org/10.1128/jb.171.7.3696-3703.1989

Wang, G., & Xu, Y. (2008). Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Reports, 27, 1177-1184. https://doi.org/10.1007/s00299-008-0535-8

Wang, X., Chen, S., Zhang, H., Luo, P., Zhou, F., Zeng, B., Zu, J., & Fan, C. (2023). Agrobacterium-mediated genetic transformation of the most widely cultivated superior clone Eucalyptus urophylla × E. grandis DH32-29 in southern China. Frontiers in Plant Science, 13, 1011245. https://doi.org/10.3389/fpls.2022.1011245

Wu, H., Sparks, C., Amoah, B., & Jones, H. D. (2003). Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports, 21, 659-668. https://doi.org/10.1007/s00299-002-0564-7

Zoina, A., & Raio, A. (1999). Susceptibility of some peach rootstocks to crown gall. Journal of Plant Pathology, 81(3), 181-187.

Published

11-07-2024

How to Cite

Kumari, K. G., & Jayabalan, N. (2024). Optimization of stable genetic transformation protocol in castor (Ricinus communis L. cv. TMV 5) using beta glucuronidase reporter gene for pioneer of desirable genes. Current Botany, 15, 87–97. https://doi.org/10.25081/cb.2024.v15.8318

Issue

Section

Regular Articles