Screening of Padina boergesenii for pharmacological activities


  • Nirmala Mahendran Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Namakkal-637205, Tamil Nadu, India
  • Priya Rajendran Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Namakkal-637205, Tamil Nadu, India
  • Sasikumar Kandasamy Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
  • Gobianand Kuppannan Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Namakkal-637205, Tamil Nadu, India
  • Muhammad Musthafa Poyil Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Namakkal-637205, Tamil Nadu, India
  • Malarvizhi Arthanari Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Namakkal-637205, Tamil Nadu, India



Brownalgae, Macroalgae, Padina boergesenii, Seaweeds


Padina boergesenii is a distinctive small brown algae with rounded fronds growing to a length and diameter of 04 to 06 cm (1.6 to 2.4 in). P. boergesenii is widely present in the shallow water of tropical, subtropical and warm temperate areas. The present study aimed to investigate the anti-bacterial, anti-biofilm, antioxidant, anti-inflammatory and cytotoxicity activities of crude ethyl acetate extract of P. boergesenii. Anti-bacterial activity of crude ethyl acetate extract of P. boergesenii against Gram-positive and Gram-negative bacteria was determined using the well diffusion method. MIC of P. boergesenii against biofilm was carried out by the Resazurin method. Antioxidant potential was assessed by DPPH, FRAP, and the Hydrogen peroxide scavenging method. The anti-inflammatory activity was investigated using the albumin denaturation and heat-induced hemolysis method. Cytotoxicity activity of P. boergesenii against cell line L929 was analyzed by MTT assay. The maximum zone of inhibition obtained was 23 mm for Staphylococcus aureus, followed by 21 mm for Escherichia coli. Biofilm of Enterococcus faecalis showed higher resistance (MIC= 25.00±00.00 mg/mL). Biofilm of Acinetobacter baumannii was found to be most susceptible (MIC= 06.25±00.00 mg/mL). The IC50 value for the crude ethyl acetate extract P. boergesenii was 155.5 μg/mL for the DPPH method, 1567.18 μg/mL for the FRAP method, and 3098.27 μg/mL for the H2O2 method. The results of in vitro anti-inflammatory studies exhibited IC50= 122.33 μg/mL and 2522.40 μg/mL for albumin denaturation assay and heat-induced hemolysis method respectively. The crude ethyl acetate extract of P. boergesenii showed cytotoxicity against the growth of the L929 cell line. The present study suggested that the crude ethyl acetate extract P. boergesenii has potent antibacterial, anti-biofilm, antioxidant, anti-inflammatory and cytotoxicity activities. The bioactive components present in the P. boergesenii extract can be a promising source for pharmaceuticals.


Download data is not yet available.


Ahmed, H. H., Hegazi, M. M., & Fahim, C. B. (2016). Cystoseira myrica and Padina pavonica: A potential natural hope against hepatic injury in animal model. Der Pharmacia Lettre, 8(4), 161-172.

Amsler, C. D., & Fairhead, V. A. (2005). Defensive and sensory chemical ecology of brown algae. Advances in Botanical Research, 43, 1-91.

Ansari, A. A., Ghanem, S. M., & Naeem, M. (2019). Brown Alga Padina: A review. International Journal of Botany Studies, 4(1), 01-03.

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.

Berber, I., Avşar, C., & Koyuncu, H. (2015). Antimicrobial and antioxidant activities of Cystoseira crinita Duby and Ulva intestinalis Linnaeus from the coastal region of Sinop, Turkey. Journal of Coastal Life Medicine, 3(6), 441-445.

Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14(5), 323-328.;2-Q

CLSI. (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute.

El-Fatimy, E. S., & Said, A. A.-M. (2011). Antibacterial activity of methanolic extract of dominant marine alga (Padina pavonia) of Tolmeta Coasts, Libya. Journal of American Science, 7, 745-751.

El-Manawy, I. M., Nassar, M. Z., Fahmy, N. M., & Rashedy, S. H. (2019). Evaluation of proximate composition, antioxidant and antimicrobial activities of some seaweeds from the Red Sea coast, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 23(1), 317-329.

El-Sheekh, M. M., Mousa, A. S. H., & Farghl, A. A. M. (2020). Antibacterial efficacy and phytochemical characterization of some marine brown algal extracts from the red sea, Egypt. Romanian Biotechnological Letters, 25(1), 1160-1169.

Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., & Banat, I. M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38, 1015-1019.

Faulkner, D. J. (2001). Marine natural products. Natural Product Reports, 18, 1R-49R.

Govindarajan, R., Rastogi, S., Vijayakumar, M., Shirwaikar, A., Rawat, A. K. S., Mehrotra, S., & Pushpangadan, P. (2003). Studies on the antioxidant activities of Desmodium gangeticum. Biological and Pharmaceutical Bulletin, 26(10), 1424-1427.

Gulcin, I., Sat, I. G., Beydemi, S., & Kufrevioglu, O. I. (2004). Evaluation of the in vitro antioxidant properties of extracts of Broccoli (Brassica oleraceal). Indian Journal of Food Science, 16(1), 17-30.

Ibtissam, C., Hassane, R., Jose, M.-L., Francisco, D. S. J., Antonio, G. V. J., Hassan, B., & Mohamed, K. (2009). Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. African Journal of Biotechnology, 8(7), 1258-1262.

Ismail, A., Ktari, L., Ahmed, M., Bolhuis, H., Boudabbous, A., Stal, L. J., Cretoiu, M. S., & El Bour, M. (2016). Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina pavonica. Frontiers in Microbiology, 7, 1072.

Kanagarajjeevitha, Damahe, J., Das, S., Chowdhury, T. R., & Khora, S. S. (2014). In vitro antioxidant and cytotoxic activity of brown alga Padina boergesenii. International Journal of Drug Development and Research, 6(2), 110-119.

Karthikeyan, R., Somasundaram, S. T., Manivasagam, T., Balasubramanian, T., & Anantharaman, P. (2010). Hepatoprotective activity of brown alga Padina boergesenii against CCl4 induced oxidative damage in Wistar rats. Asian Pacific Journal of Tropical Medicine, 3(9), 696-701.

Kim, S.-K., Thomas, N. V., & Li, X. (2011). Anticancer compounds from marine macroalgae and their application as medicinal foods. Advances in Food and Nutrition Research, 64, 213-224.

Kumar, K. A., & Rengasamy, R. (2000). Evaluation of antibacterial potential of seaweeds occurring along the coast of Tamil Nadu, India against the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae (Ishiyama) Dye. Botanica Marina, 43(5), 409-415.

Kumar, P. S., & Sudha, S. (2012). Evaluation of Antioxidant Activity and Total Phenolic Content of Padina boergesenii from Gulf of Mannar. Drug Invention Today, 4(12), 635-639.

Loosdrecht, A. A. V. de, Beelen, R. H. J., Ossenkoppele, G. J., Broekhoven, M. G., & Langenhuijsen, M. M. A. C. (1994). A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. Journal of Immunological Methods, 174(1-2), 311-320.

MacArtain, P., Gill, C. I. R., Brooks, M., Campbell, R., & Rowland, I. R. (2007). Nutritional value of edible seaweeds. Nutrition Reviews, 65(12), 535-543.

Mashjoor, S., Yousefzadi, M., Esmaeili, M. A., & Rafiee, R. (2016). Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology, 68, 1717-1726.

Mizushima, Y., & Kobayashi, M. (1968). Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. Journal of Pharmacy and Pharmacology, 20(3), 169-173.

Naeem, E., El-Ghoneimy, A., & Ahmed, H. (2022). Anti-inflammatory activities of a sulfated polysaccharide isolated from the brown seaweed Padina boergesenii (Phaeophyceae, Dictyotaceae). SVU- International Journal of Veterinary Sciences, 5(1), 83-101.

Ragunath, C., Kumar, Y. A. S., Kanivalan, I., & Radhakrishnan, S. (2020). Phytochemical screening and GC-MS analysis of bioactive constituents in the methanolic extract of caulerpa racemosa (Forssk.) j. agardh and Padina boergesenii allender & kraft. Current Applied Science and Technology, 20(3), 380-393.

Rajamani, K., & Thirugnanasambandan, S. S. (2018). Polyphenols from brown alga, Padina boergesenii (Allendar & Kraft) decelerates renal cancer growth involving cell cycle arrest and induction of apoptosis in renal carcinoma cells. Environmental Toxicology, 33(11), 1135-1142.

Ramezanpour, Z., & FatemeGhanbariPirbasti, & RasouliDogaheh, S. (2021). Bioactivity potential of Gracilaria salicornia, Padina boergesenii, Polycladia myrica: antibacterial, antioxidant and total phenol assays. Journal of Phycological Research, 5(1), 597-615.

Sakat, S. S., Juvekar, A. R., & Gambhire, M. N. (2010). In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. International Journal of Pharmacy and Pharmaceutical Sciences, 2(1), 146-155.

Samar, J., Butt, G. Y., Shah, A. A., Shah, A. N., Ali, S., Jan, B. L., Abdelsalam, N. R., & Hussaan, M. (2022). Phycochemical and Biological Activities fom Different Extracts of Padina antillarum (Kützing) Piccone. Frontiers in Plant Science, 13, 929368.

Shinde, U. A., Kulkarni, K. R., Phadke, A. S., Nair, A. M., Mungantiwar, A. A., Dikshit, V. J., & Saraf, M. N. (1999). Mast cell stabilizing and lipoxygenase inhibitory activity of Cedrus deodara (Roxb.) Loud Wood Oil. Indian Journal of Experimental Biology, 37(3), 258-261.

Soleimani, S., Yousefzadi, M., Nezhad, S. B. M., Pozharitskaya, O. N., & Shikov, A. N. (2022). Utilization of the ethyl acetate fraction of Padina boergesenii as a natural UV filter in sunscreen cream formulation. Research Square, Preprint, 1-17.

Taskin, E., Ozturk, M., Taskin, E., & Kurt, O. (2007). Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African Journal of Biotechnology, 6(24), 2746-2751.

Wijesinghe, W. A. J. P., & Jeon, Y.-J. (2012). Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydrate Polymers, 88(1), 13-20.

Zain, M. E., Awaad, A. S., Al-Outhman, M. R., & El-Meligy, R. M. (2012). Antimicrobial activities of Saudi Arabian desert plants. Phytopharmacology, 2, 106-113.

Zemke-White, W. L., & Ohno, M. (1999). World seaweed utilization: an end-of-century summary. Journal of Applied Phycology, 11, 369-376.

Zhou, Y., Kong, Y., Kundu, S., Cirillo, J. D., & Liang, H. (2012). Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. Journal of Nanobiotechnology, 10, 19.



How to Cite

Mahendran, N., Rajendran, P., Kandasamy, S., Kuppannan, G., Poyil, M. M., & Arthanari, M. (2023). Screening of Padina boergesenii for pharmacological activities. Current Botany, 14, 41–48.



Regular Articles