Comparative cytotoxicity of in vitro and field grown shoots of Withania somnifera in Caenorhabditis elegans model

Authors

  • Krishnapriya Santhanu Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science & Higher Education for Women, Coimbatore-641043, Tamil Nadu, India
  • D. Parameshwari Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science & Higher Education for Women, Coimbatore-641043, Tamil Nadu, India
  • Kanimozhi Natarajan Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science & Higher Education for Women, Coimbatore-641043, Tamil Nadu, India
  • Sangeetha Vinod Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science & Higher Education for Women, Coimbatore-641043, Tamil Nadu, India
  • Kalaiselvi Senthil Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science & Higher Education for Women, Coimbatore-641043, Tamil Nadu, India

DOI:

https://doi.org/10.25081/cb.2022.v13.8016

Keywords:

W. Somnifera, toxicity, C. elegans, in vitro cultures

Abstract

Indian ginseng, also known as Withania somnifera, is a popular medicinal plant used as a domestic treatment for a number of age-related illnesses. The field grown WS roots are referred as as a Rasayana (Rejuvenator) medication in the traditional Ayurvedic medicine of India. It has been utilized as the main component in many formulations to help slow down the aging process, manage stress, and be a remarkable neuroprotectant. The quantity and quality of traditionally grown plants, however, provide a considerable hurdle to their use in herbal-based products. The objective of this study was to determine the toxicity of shoots of in vitro developed W. somnifera, in Caenorhabditis elegans model and to compare the toxicological effect with that of plant shoots grown in the field. We found that biosafety is strictly concentration dependent. It was clear from the results that 250 µg/µL of W. somnifera shoot extract exhibited maximum viability for wild type animals. 

Downloads

Download data is not yet available.

References

Archana, R., & Namasivayan, A. (1999). Antistressor effect of Withania somnifera. Journal of Ethnopharmacology, 64, 91-93. https://doi.org/10.1016/s0378-8741(98)00107-x

Bhandari, C. B. (1970). Ashwagandha (Withania somnifera) “Vanaushadhi Chandroday” (An Encyclopedia of Indian Herbs) Vol. 1. Varanasi, India: CS Series of Varanasi Vidyavilas Press.

Brenner, S. (1974).The genetics of Caenorhabditis elegans. Genetics, 77(1), 71-94. https://doi.org/10.1093/genetics/77.1.71

Collins, J. J., Evason, K., & Kornfeld, K. (2006). Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Experimental Gerontology, 41,1032- 1039. https://doi.org/10.1016/j.exger.2006.06.038

Davis, L., & Kuttan, G. (2002). Effect of Withania somnifera on cell mediated immune responses in mice. Journal of Experimental and Clinical Cancer Research, 21(4), 585-590

Dolatkhahi, M., Dolatkhahi, A., & Nejad, J. B. (2014). Ethnobotanical study of medicinal plants used in arjan - parishan protected area in fars province of Iran. Avicenna Journal of Phytomedicine, 4(6), 402-412. https://doi.org/10.22038/AJP.2014.3387

Fabian, T. J., & Johnson, T. E. (1994). Production of age-synchronous mass cultures of Caenorhabditis elegans. Journal of Gerontology, 49(4), B145–B156. https://doi.org/10.1093/geronj/49.4.b145

Fielenbach, N., & Antebi, A. (2008).C. elegans dauer formation and the molecular basis of plasticity. Genes & Development, 22, 2149-2165. https://doi.org/10.1101/gad.1701508

Flecknell, P. (2002). Replacement, reduction, and refinement. Alternatives to Animal Testing,19(2), 73-78. https://doi.org/10.1586/14760584.8.3.313

Gupta, G. L., & Rana, A. C. (2007). Protective effect of Withania somnifera Dunal root induced behavior in rats. Indian Journal of Physiology and Pharmacology, 51(4), 345–353.

Gupta, M., Rray, A. B., & Rodriquez-Hahn, L. (1994). Progress in the chemistry of organic natural products. Springer, New York.

Himri, I., Uraadaoui, A., Souna, F., Bouakka, M., Melhaoui, A., Hakkou, A., & Saalaoui, E. (2013). Toxicity testing of tartrazine using the nematode Caenorhabditis elegans, brine shrimp larvae (Artemia salina) and KGN granulose cell line. Journal of Applied Pharmaceutical Science, 3(11), 51- 58. https://doi.org/10.7324/JAPS.2013.31110

Ichikawa, H., Takada, Y., Shishodia, S., Jayaprakasam, B., Nair, M. G., & Aggarwal, B. B. (2006). Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression. Molecular Cancer Therapeutics, 5(6), 1434–1445. https://doi.org/10.1158/1535-7163.MCT-06-0096

Jayaprakasam, B., & Nair, M. (2003). Cyclooxygenase-2 inhibitory withanolides from Withania somnifera leaves.Tetrahedron, 59(6), 841–849. https://doi.org/10.1016/S0040-4020(02)01601-0

Jiang, H. F., Zhuang, Z. H., Hou, B.W., Bao, J. S., Shi, B. J., Shu, C. J., Chen, L., Shi, G. X., & Zhang, W. M. (2017). Adverse effects of hydroalcoholic extracts and their major components in the stems of Impatiens balsamia L. on Caenorhabditis elegans. Evidence-Based Complementary and Alternative Medicine, 1-10. https://doi.org/10.1155/2017/4245830

Johnson,T. E. (2003). Advantages and disadvantages of Caenorhabditis elegans for aging research. Experimental Gerontology, 38, 1329-1332. https://doi.org/10.1016/j.exger.2003.10.020

Klass, M. R. (1997). Aging in nematode Caenorhabditis elegans -Major biological and environmental factors influencing lifespan. Mechanisms of Ageing and Development, 6, 413-429. https://doi.org/10.1016/0047-6374(77)90043-90044

Kumar, V., Murthy, K. N. C., Bhamidi, S., Sudha, C. G., & Ravishankar, G. A. (2005). Genetically modified hairy roots of Withania somnifera dunal: A potent source of rejuvenating principles. Rejuvenation Research, 8(1), 37-45. https://doi.org/10.1089/rej.2005.8.37

Lucanic, M., Lithgow, G. J., & Alavez, S. (2013). Pharmacological lifespan extension of invertebrates. Ageing Research Reviews, 12, 445-458. https://doi.org/10.1016/j.arr.2012.06.006

Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazón, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecule, 14(7), 2373–2393. https://doi.org/10.3390/molecules14072373

Misra, B. (2004). Ashwagandha- Bhavprakash Nigantu. Indian Materia Medica, Varanasi: Chaukhambha Bharti Academy.

Narendra,S., Mohit, B., Prashanti de, J., & Marilena, G. (2011). An Overview on Ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. The African Journal of Traditional, Complementary and Alternative Medicines, 8(5), 208–213. https://doi.org/10.4314/ajtcam.v8i5S.9

Pandey, M. M., Rastogi, S., & Rawat, A. K. S. (2013).Indian traditional ayurvedic system of medicine and nutritional supplementation. Evidence-Based Complementary and Alternative Medicine,1-12. https://doi.org/10.1155/2013/376327

Parameswari, M., Estri Laras, A., Joni, K., Valizadeh, M., & Kalaiselvi, S. (2017). A study on the influence of plant growth regulator on shoot multiplication and evaluation of major withanolides in Withania somnifera. World Journal of Pharmaceutical Research, 6(8), 842-853. https://doi.org/10.20959/wjpps20178-8944

Praveen, N., Naik, P., Manohar, S., & Murthy, H. (2010). Distribution of withanolide A content in various organs of Withania somnifera (L.) Dunal. International Journal of Pharma and Bio Sciences, 1(3), 1–5.

Rand, J. B., Johnson, C. D., Rand, J. B. & Johnson, C. D. (1995). Genetic pharmacology: interactions between drugs and gene products in Caenorhabditis elegans. Methods in Cell Biology, 48, 187-204. https://doi.org/10.1016/s0091-679x(08)61388-6

Sangilimuthu, A. Y., Lukmanul, H. F., & Sathishkumar, R. (2011). Antioxidant activity of Withania somnifera (L.) Dunal by different solvent extraction methods. Journal of Pharmacy Research, 4(5), 1428-1430.

Sangwan, R. S., Chaurasia, N. D., Mishra, L. N., Lal, P., Uniyal, G. C., Sharma, R., Sangwan, N. S., Suri, G. N., & Quazi, R.(2004). Withanolide A biogeneration in in vitro shoot cultures of Ashwagandha (Withania somnifera Dunal) a main medicinal plant in Ayurveda. Chemical and Pharmaceutical Bulletin, 55(9), 1371-1375. https://doi.org/10.1248/cpb.55.1371

Sharada, M., Ahuja, A., Suri K., Vij, S., Khajuria, R. V., & Verma, V. (2007). Withanolide production by in vitro cultures of Withania somnifera and its association with differentiation. Biologia Plantarum, 51(1), 161–164. https://doi.org/10.1007/s10535-007-0031-y

Sivanandhan, M., Arun, S., Mayavan, M., Rajesh, M., Jeyaraj, G., & Kapil, D. (2012). Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of withanolides in the adventitious root culture of Witha.nia somnifera (L.) dunal. Applied Biochemistry and Biotechnology, 168(3), 681-696. https://doi.org/10.1007/s12010-012-9809-2

Stiernagle, T. Maintenance of C. elegans. (2006). Wormbook, 11,1-11.

Thomas B. L. K. (2011). System biology of aging and longevity. Philosophical Transactions of the Royal Society B, 366, 64-70. https://doi.org/10.1098/rstb.2010.0275

Xiong, H., Pears, C., & Woollard, A. (2017). An enhanced C. elegans based platform for toxicity assessment. Scientific Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-10454-3

Yang, Z., Xue, S. K., Sun, X., Tang, L, & Wang, J. S. (2015). Multi – toxic endpoints of the foodborne mycotoxins in nematode Caenorhabditis elegans. Toxins, 7(12), 5224-5235. https://doi.org/10.3390/toxins7124876

Published

20-10-2022

How to Cite

Santhanu, K., Parameshwari, D., Natarajan, K., Vinod, S., & Senthil, K. (2022). Comparative cytotoxicity of in vitro and field grown shoots of Withania somnifera in Caenorhabditis elegans model. Current Botany, 13, 70–75. https://doi.org/10.25081/cb.2022.v13.8016

Issue

Section

Regular Articles