Molecular characterization and antioxidant activity of Volkameria inermis L.

Authors

  • U. Thiripura Sundari Department of Botany, Holy Cross College, Affiliated to Bharathidasan University, Tiruchirappalli – 620002, Tamil Nadu, India
  • P. Shanthi Department of Botany, Holy Cross College, Affiliated to Bharathidasan University, Tiruchirappalli – 620002, Tamil Nadu, India

DOI:

https://doi.org/10.25081/cb.2022.v13.7628

Keywords:

Volkameria inermis L., molecular characterization, phylogenetics and antioxidant potential

Abstract

The present investigation aimed to study the genomic characterization and free radical scavenging potential of a traditional plant Volkameria inermis. A chloroplast genome rbcL was used in molecular characterization and it revealed the phylogeny and evolutionary affinities of V. inermis with the outgroups of the family through BLAST search based on Neighbor-Joining (NJ) analysis. The free radical scavenging potential of various extracts of V. inermis was observed at different concentrations (20, 40, 60, 80 and 100 μg/mL) in DPPH and ABTS in vitro models. Ascorbic acid (DPPH) and Trolox (ABTS) were used as standard. In DPPH assay, among the different extracts (hexane, chloroform, acetone, ethanol, methanol and water) tested, methanol showed maximum scavenging activity with the IC50 value of 28.33μg/mL followed by acetone with the IC50 value of 31.937μg/mL. The other extracts, ethanol and water extracts showed moderate activity with the IC 50 value of 82.558 μg/mL and 81.758μg/mL; chloroform and hexane showed very lower antioxidant activity and the IC50 values are 518.776μg/mL, 1066.16μg/mL accordingly. In ABTS assay, methanol was observed as a highly active extracts with the IC50 value of 70.196μg/mL followed by ethanol extract (103.078μg/mL). The results showed that the methanol extract exhibits strong antioxidant activity in DPPH and ABTS assays. The scavenging efficiency showed dose dependent increase in concentration absorption compared to Ascorbic acid and Trolox. Our findings provide the molecular identification and evidence for the potential of Volkameria inermis as a source of natural antioxidants.

Downloads

Download data is not yet available.

References

Adebiyi, O. E., Olayemi, F. O., Hua, T. N., & Zhi, Z. G. (2017). In-vitro antioxidant activity, total phenolic and flavonoids contents of ethanol extracts of stem and leaf of Grewia carpinifolia. Beni-Suef University Journal of Basic and Applied Sciences, 6(1), 10-14. https://doi.org/10.1016/j.bjbas.2016.12.003

Amin, S., Ghosh, S., Biswas, B., Arifuzzaman, M., Azad M. A. K., & Siddiki, A. Z. (2020). Molecular identification of four medicinal plants using DNA barcoding approach from Chittagong, Bangladesh. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(3), 268-272. https://doi.org/10.5455/jabet.2020.d134

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12794–12797. https://doi.org/10.1073/pnas.0905845106

Chang, H. C., Huang, G. J., Agrawal, D. C., Kuo, C. L., Wu, C. R., & Tsay, H. S. (2007). Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu”. Botanical Studies, 48(4), 397-406.

Chethana, G. S., Savitha, H., Jyothi, N., Harivenkatesh, K. R., & Gopinath, S. M. (2013). Pharmacognostic investigations on different parts of Clerodendrum inerme. Global Journal of Research on Medicinal Plants & Indigenous Medicine, 2(7), 485-491.

Dehariya, R., Chandrakar, J., Dubey, S., Ojha, K., & Dixit, A. K, (2020), Scavenging and metal chelating potential of Carthamus tinctorius L. extracts. Current Botany, 11, 43-50. https://doi.org/10.25081/cb.2020.v11.6009

Dhakad, A. K., Pandey, V. V., Kumar, R., Yhakur, A., Chandra, A., Verma, P. K. (2020). Molecular taxonomy of Indopiptadenia oudhensis (Brandis) Brenan (Leguminosae-Mimosoideae)-A threatened Indian endemic monotypic genus. Current Botany, 11, 28-33. https://doi.org/10.25081/cb.2020.v11.5977

Dobriyal, V., Guleri, S., & Singh, M. (2021). Morphological, anatomical and preliminary phytochemical characterization of Buddleja madagascariensis Lam. Current Botany, 12, 53-61. https://doi.org/10.25081/cb.2021.v12.6242

Farag, R. S., Abdel – Latif, M. S., Abdel Baky, H. H., & Tawfeek, L. S. (2020). Phytochemical screening and antioxidant activity of some medicinal plants crude juices. Biotechnology Reports, 28, e00536. https://doi.org/10.1016/j.btre.2020.e00536

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Floyd, R., Abebe, E., Papert, A., & Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology, 11(4), 839–850. https://doi.org/10.1046/j.1365-294x.2002.01485.x

Gangwar, M., Gautam, M. K., Sharma, A. K., Tripathi, Y. B., Goel, R. K., & Nath, G. (2014). Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: An in-vitro study. The Scientific World Journal, 2014, 279451. https://doi.org/10.1155/2014/279451

Garcia, M. S., & Castro, M. R. (2016). Effect of solvent and solvent-to-solid ratio on the phenolic extraction and the antioxidant capacity of extracts from Pinus durangensis and Quercus sideroxyla Bark. Maderas: Ciencia y Technologia, 18(4), 701–714.

Harborne, J. B. (1973). Phytochemical methods; a guide to modern techniques of plant analysis. (3rd ed., pp. 135-203). London: Chapman & Hall.

Hebert, P. D. N., Cywinska, A., Ball, S. L., & Dewaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218

Heckenhauer, J., Barfuss, M. H. J., & Samuel, R. (2016). Universal multiplexable matK primers for DNA barcoding of angiosperms. Applications in Plant Sciences, 4(6), 1500137. https://doi.org/10.3732/apps.1500137

Kanchanapoom, T., Kasai, R., Chumsri, P., Hiraga, Y., & Yamasaki, K. (2001). Megastigmane and iridoid glucosides from Clerodendrum inerme. Phytochemistry, 58(2), 333-336. https://doi.org/10.1016/S0031-9422(01)00208-4

Kimura, M. (1980). Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. https://doi.org/10.1007/BF01731581

Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. Plos One, 2(6), e508. https://doi.org/10.1371/journal.pone.0000508

Kumar, A., Pushpangadan, P., & Mehrotra, S. (2003). Extraction of high molecular weight DNA from dry root tissue of Berberis lycium suitable for RAPD. Plant Molecular Biology Reporter, 21, 309. https://doi.org/10.1007/BF02772807

Lahaye, R., Van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T. G., & Savolainen, V. (2008). DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2923–2928. https://doi.org/10.1073/pnas.0709936105

Meng, J. F., Fang, Y. L., Qin, M. Y., Zhuang, X. F., & Zhang, Z. W. (2012). Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex.) in Chongyi County (China). Food Chemistry, 134(4), 2049–2056. https://doi.org/10.1016/j.foodchem.2012.04.005

Musa, K. H., Abdullah, A., & Al-Haiqi, A. (2016). Determination of DPPH free radical scavenging activity: Application of artificial neural networks. Food Chemistry, 194, 705-711. https://doi.org/10.1016/j.foodchem.2015.08.038

Nurilmala, M., Sari, E. M., Abdullah, A., Hizbullah, H. H., Butet, N. A., & Sudrajat, A. O. (2020). DNA barcoding for seahorse identification and its potential as antioxidant and stimulant indicator. IOP Conference Series: Earth and Environmental Science, 404, 012002. https://doi.org/10.1088/1755-1315/404/1/012002

Shanthi, P., Thiripura Sundari, U., Sownthariya, C., & Nisha, A. (2020). Phytochemical And FTIR analysis of a mangrove plant - Volkameria inermis L. International Journal of Pharma and Bio Sciences, 11(1), 1-5. https://doi.org/10.22376/ijpbs.2020.11.1.b1-5

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739. https:/doi.org/10.1093/molbev/msr121

Tandon, D., & Gupta, A. K. (2020). Comparative assessment of antimicrobial and antioxidant activity between whole plant and parts of Sphaeranthus indicus Linn. (Asteraceae). Clinical Phytoscience, 6, 23. https://doi.org/10.1186/s40816-020-00172-1

Thompson, J. D., Higgins, D. G., & Gibson, T. J. B. (1994). Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673

Trease, G. E., & Evans, W. C. (1989). Pharmacognosy. (13th ed.). London: Bailliere Tindall Publisher.

Truong, D. H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H., & Nguyen, H. C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and In Vitro anti-inflammatory activities of Severinia buxifolia. Journal of Food Quality, 8178294. https://doi.org/10.1155/2019/8178294

Wagstaff, S. J., & Olmstead, R. G. (1997). Phylogeny of the Labiatae and Verbenaceae inferred from rbcL sequences. Systematic Botany, 22(1), 165 – 179. https://doi.org/10.2307/2419684

Wang, M., Li, J., Rangarajan, M., Shao, Y., LaVoie, E. J., Huang, T., & Ho, C. (1998). Antioxidative phenolic compounds from Sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 46, 4869-4873.

Yang, S. Q., Cheng, C. Y., Qin, X. D., Yu, X. Q., Lou, Q. F., Li, J., Qian, C. T., & Chen, J. F. (2019). Comparative cyto-molecularmanalysis of repetitive DNA provides insights into the differential genome structure and evolution of five Curcumis species. Horticultural Plant Journal, 5(5), 192-204. https://doi.org/10.1016/j.hpj.2019.07.002

Yuan, Y. W., Mabberley, D. J., Steane, D. A., & Olmstead, R. G. (2010). Further disintegration and redefinition of Clerodendrum (Lamiaceae): Implications for the understanding of the evolution of an intriguing breeding strategy. Taxon, 59(1), 125–133. https://doi.org/10.1002/tax.591013

Published

30-08-2022

How to Cite

Thiripura Sundari, U., & Shanthi, P. (2022). Molecular characterization and antioxidant activity of Volkameria inermis L. Current Botany, 13, 46–52. https://doi.org/10.25081/cb.2022.v13.7628

Issue

Section

Regular Articles