Effects of copper bioaccumulation on growth and biochemical constituents of the seedlings of Casuarina equisetifolia L.

Authors

  • B. M. Rathna Kumari Department of Botany, Government First Grade College, Vijayanagara, Bengaluru-560 104, Karnataka, India

DOI:

https://doi.org/10.25081/cb.2022.v13.7212

Keywords:

Casuarina, copper, accumulation, biochemical constituents, biological processes

Abstract

Accumulation of heavy metals in the soil causes a significant impact on the biological processes in the plants.  In the present study, the impact of bioaccumulation of copper (Cu) on the growth and biochemical constituents of the seedlings of Casuarina equisetifolia was assessed. The results showed that C. equisetifolia is a hyper-accumulator of Cu. The roots of the C. Equisetifolia significantly accumulated (p< 0.05) greater levels of Cu than stem and leaves. Similarly, the seedlings exposed to different concentrations of Cu showed differential height and collar diameter. The higher concentrations of Cu significantly (p< 0.05) hindered the fresh and dry weights of seedlings. It was noticed that accumulated Cu caused a significant decrease in levels of total carbohydrates, proteins and chlorophyll contents in C. equisetifolia seedlings.

Downloads

Download data is not yet available.

References

Amin, H., Arain, B. A. Jagangir, T. M. Abbasi, A. R., Mangi, J., & Abbasi, M. S. (2019). Copper (Cu) tolerance and accumulation potential in four native plant species: a comparative study for effective phytoextraction technique. Geology, Ecology, and Landscapes, 5, 53-64. https://doi.org/10.1080/24749508.2019.1700671

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1

Barbosa, R. H, Tabaldi, L. A, Miyazaki, F. R., Pilecco, M., Kassab, S. O., & Bigaton, D. (2013). Foliar copper uptake by maize plants: effects on growth and yield. Ciencia Rural, 43, 1561–1568. https://doi.org/10.1590/S0103-84782013000900005

Cui, S., Zhou, Q., & Chao, L. (2007). Potential hyper accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environmental Geology, 51(6), 1043- 1048. https://doi.org/10.1007/s00254-006-0373-3

Fernandes, J. C., & Henriques, F. S. (1991). Biochemical, physiological, and structural effects of excess copper in plants. The Botanical Review, 57, 246–273. https://doi.org/10.1007/BF02858564

Guilizzoni, P. (1991). The role of heavy metals and toxic materials in the physiological ecology of submerged macrophytes. Aquatic Botany, 41(1-3), 87-109. https://doi.org/10.1016/0304-3770(91)90040-C

Guo, T. R., Zhang, G. P., & Zhang, Y. H. (2007). Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids and Surfaces. B, Biointerfaces, 57(2), 182–188. https://doi.org/10.1016/j.colsurfb.2007.01.013

Hedge, J. E., & Hofreiter, B. T. (1962).Carbohydrate chemistry 17. Whistler, R. L. and Be Miller, J. N., (Eds)., Academic Press, New York.

Lange, B., van der Ent, A., Baker, A. J. M., Echevarria, G., Mahy, G., Malaisse, F., Meerts, P., Pourret, O., Verbruggen, N., & Faucon, M-P. (2017). Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist, 213(2), 537-551. https://doi.org/10.1111/nph.14175

Lone, M. I., He, Z. L., Stoffella, P. J., & Yang, X. E. (2008). Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. Journal of Zhejiang University. ScienceB, 9(3), 210–220. https://doi.org/10.1631/jzus.B0710633

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

Luo, X., Li, C., Yang, D., Liu, F., & Chen, Y. (2015). Sonochemical synthesis of porous Cu2O-Cu hollow spheres and their photo-catalysis. Materials Chemistry and Physics, 151, 252–258. https://doi.org/10.1016/j.matchemphys.2014.11.062

Pahalawattaarachchi, V., Purushothaman, C. S., & Alagarsamy, V. (2009). Metal phytoremediation potential of Rhizophora mucronata (Lam.). Indian Journal of Geo-Marine Sciences, 38(2), 178183.

Patsikka, E., Kairavuo, M., Sersen, F., Aro, E.-M., & Tyystjarvi, E. (2002). Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiology, 129, 1359–1367. https://doi.org/10.1104/pp.004788

Prasad, D. P. H., & Prasad, A. R. K. (1987). Effects of lead and mercury on chlorophyll synthesis in mungbean seedlings. Phytochemistry, 26(4), 881–884. https://doi.org/10.1016/S0031-9422(00)82310-9

Rathna Kumari, B. M., & Raveesha, H. R. (2021). Phytoremediation of soil contaminated with chromated copper arsenate (CCA) using Eucalyptus species. International Journal of Ecology and Environmental Sciences, 3, 24-28.

Saleem, M. H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, S., Shafiq, F., Iqbal, M., Alharbi, B. M., Alnusaire, T. S., & Qari, S. H. (2020). Jute: A potential candidate for phytoremediation of metals-A review. Plants, 9(2), 258. https://doi.org/10.3390/plants9020258

Saleem, M. H., Ali, S., Seleiman, M. F., Rizwan, M., Rehman, M., Akram, N. A., Liu, L., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2019). Assessing the correlations between different traits in copper-sensitive and copper-resistant varieties of jute (Corchorus capsularis L.). Plants, 8(12), 545. https://doi.org/10.3390/plants8120545

Shah, A., Sultan, S., Shah, A.H., Nayab, S., Khan, G.S., & Hussain, H. (2017). An electrochemical sensing platform for the trace level detection of copper. Journal of the Electrochemical Society, 164(6), 184-188.

Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and environmental safety, 66(2), 258–266. https://doi.org/10.1016/j.ecoenv.2005.11.007

Shrivastava, A. K. (2009). A review on copper pollution and its removal from water bodies by pollution control technologies. Indian journal of Environmental Protection, 29(6), 552–560.

Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment?. Frontiers in Plant Science, 9, 1476. https://doi.org/10.3389/fpls.2018.01476

Turgut, C., Katie Pepe, M., & Cutright, T. J. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 131(1), 147–154. https://doi.org/10.1016/j.envpol.2004.01.017

Verma, S., & Dubey, R. S. (2001). Effect of Cadmium on soluble sugars and enzymes of their metabolism in rice. Biologia Plantarum, 44, 117-123. https://doi.org/10.1023/A:1017938809311

Published

28-03-2022

How to Cite

Kumari, B. M. R. . (2022). Effects of copper bioaccumulation on growth and biochemical constituents of the seedlings of Casuarina equisetifolia L. Current Botany, 13, 8–11. https://doi.org/10.25081/cb.2022.v13.7212

Issue

Section

Regular Articles