Graph theoretical analysis, pharmacoinformatics and molecular docking investigation of Chalcone-Schiff base hybrids as Cyclin-Dependent kinase inhibitors

Authors

  • Praveen Sekar Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode, Namakkal-637 205, Tamil Nadu, India
  • Sathishkumar Arivanantham Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode, Namakkal-637 205, Tamil Nadu, India
  • Pavithra Jaishankar Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode, Namakkal-637 205, Tamil Nadu, India
  • Naveena Sundhararajan Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode, Namakkal-637 205, Tamil Nadu, India
  • Yogadharshini Nagalingam Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode, Namakkal-637 205, Tamil Nadu, India
  • Senthil Kumar Raju Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode, Namakkal-637 205, Tamil Nadu, India

DOI:

https://doi.org/10.25081/rip.2024.v14.8801

Keywords:

Schiff bases, Chalcone-based Schiff bases, Network Pharmacology, Enrichment analysis, Molecular docking, Theoretical studies

Abstract

One of the promising classes of compounds in medicinal chemistry and drug design is those with azomethine linkages. The Chalcone-Schiff base hybrids contain this linkage and some heteroatoms, which are versatile molecules, play a vital role in drug discovery and development with enormous therapeutic applications. In this view, the present work deals with the investigation of the in silico biological potential of the Chalcone-Schiff base hybrids based on the network pharmacology approach. From the results obtained from network pharmacology, the Cyclin-dependent kinase (CDK) isoforms were identified as the potential targets and the CDK inhibitory activity of the compounds was investigated using molecular docking studies. The in silico pharmacokinetic, metabolic and theoretical studies at DFT level were performed. Molecular docking studies revealed that the compounds have better CDK inhibitory potential with better binding affinity and interaction profile. Among the tested compounds, (Z)-2-((4,6-diphenyl-5,6-dihydro-4H-1,3-thiazin-2-yl)imino)-2,3-dihydro-1H-inden-1-one was found to be the most active compound than the standards, palbociclib and dinaciclib against the CDK isoforms (CDK1, CDK2 and CDK4) with the binding energies of -9.9, -10.3 and -10 Kcal/Mol, respectively. Also, this compound exhibited better pharmacokinetic and metabolic properties along with better solubility. The theoretical studies at the DFT level also indicate that the compound has better metabolic stability and the electron transfer from HOMO to LUMO was observed. Thus, the tested Chalcone-Schiff base hybrids can be used effectively for the inhibition of CDK isoforms.

Downloads

Download data is not yet available.

References

Abdullah, J. A., Aldahham, B. J. M., Rabeea, M. A., Asmary, F. A., Alhajri, H. M., & Islam, M. A. (2021). Synthesis, Characterization and In-Silico Assessment of Novel Thiazolidinone Derivatives for Cyclin-Dependent Kinases-2 Inhibitors. Journal of Molecular Structure, 1223, 129311. https://doi.org/10.1016/j.molstruc.2020.129311

Ahmed, A. A., Mahmood, I, Q., & Aziz, H. S. (2022). Synthesis and Characterization of Few New Substituted 1, 3, 4-Oxadiazoles 1, 2, 4-Triazoles and Schiff Bases via Chalcone Compounds. International Journal of Drug Delivery Technology, 12(3), 1087-1092. https://doi.org/10.25258/ijddt.12.3.27

Aiwonegbe, A. E., & Usifoh, C. O. (2021). Synthesis, Infra Red Characterization and Antimicrobial Evaluation of Schiff bases Derived from 1, 3-Diphenylprop-2-en-1-one and 1-Phenyl-3-(4-Chlorophenyl)-prop-2-en-1-one. Journal of Chemical Society of Nigeria, 46(2), 197-204. https://doi.org/10.46602/jcsn.v46i2.596

Ajani, O. O., Jolayemi, E. G., Owolabi, F. E., Tolubolaji, O. O., & Audu, O. Y. (2021). Heterogeneous acid Catalyzed Synthesis and Spectroscopic Characterization of Schiff bases Derived from Chalcone Derivatives. Egyptian Journal of Chemistry, 64(1), 193-200. https://doi.org/10.21608/ejchem.2020.20610.2233

Badal, M. M. R., Hossain, M. Z., Maniruzzaman, M., & Yousuf, M. A. (2020). Synthesis, Identification and Computational Studies of Novel Schiff bases N-(2, 6-Dibenzylidenecyclohexylidene)-N′-(2, 4-Dinitrophenyl) Hydrazine Derivatives. SN Applied Sciences, 2, 1914. https://doi.org/10.1007/s42452-020-03745-4

Chen, X., Robinson, D. G., & Storey, J. D. (2021). The Functional False Discovery Rate with Applications to Genomics. Biostatistics, 22(1), 68-81. https://doi.org/10.1093/biostatistics/kxz010

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717

Dangwal, K. L., & Semwal, A. R. (2016). Microwave Assisted Synthesis and Characterization of Oxime Derivatives of Substituted Chalcones. International Journal of Science and Research, 5(7), 356-358.

Datar, M., Dhanwad, R., Javeed, M., Yernale, N. G. & Mathada, B. S. (2024). Synthesis, Structural Investigations, DFT Calculations, and Molecular Docking Studies of Novel 2-(Substituted-Aryloxymethyl)-5-(Pyridin-4-yl)-1, 3, 4-Oxadiazoles: Highly potential InhA and Cytochrome c Peroxidase Inhibitors. Polycyclic Aromatic Compounds, 44(1), 473-487. https://doi.org/10.1080/10406638.2023.2174997

Ejaz, S. A., Saeed, A., Siddique, M. N., un Nisa, Z., Khan, S., Lecka, J., Sévigny, J., & Iqbal, J. (2017). Synthesis, Characterization and Biological Evaluation of Novel Chalcone Sulfonamide Hybrids as Potent Intestinal Alkaline Phosphatase Inhibitors. Bioorganic Chemistry, 70, 229-236. https://doi.org/10.1016/j.bioorg.2017.01.003

Ermiş, E. (2018). Synthesis, Spectroscopic Characterization and DFT Calculations of Novel Schiff base Containing Thiophene Ring. Journal of Molecular Structure, 1156, 91-104. https://doi.org/10.1016/j.molstruc.2017.11.089

Fandaklı, S., Doğan, İ. S., Sellitepe, H. E., Yaşar, A., & Yaylı, N. (2018). Synthesis, Theoretical Calculation and α-Glucosidase Inhibition of New Chalcone Oximes. Organic Communications, 11(1), 23-24. http://doi.org/10.25135/acg.oc.38.18.02.067

Ghafouri-Fard, S., Khoshbakht, T., Hussen, B. M., Dong, P., Gassler, N., Taheri, M., Baniahmad, A., & Dilmaghani, N. A. (2022). A eview on the Role of Cyclin Dependent Kinases in Cancers. Cancer Cell International, 22, 325. https://doi.org/10.1186/s12935-022-02747-z

Hassan, A. S., Morsy, N. M., Aboulthana, W. M., & Ragab, A. (2023). Exploring Novel Derivatives of Isatin-based Schiff bases as Multi-target Agents: Design, Synthesis, in Vitro Biological Evaluation, and in Silico ADMET Analysis with Molecular Modeling Simulations. RSC Advances, 13, 9281-9303. https://doi.org/10.1039/D3RA00297G

Ibrahim, T. S., Almalki, A. J., Moustafa, A. H., Allam, R. M., Abuo-Rahma, G. E.-D. A., El Subbagh, H. I., & Mohamed, M. F. A. (2021). Novel 1, 2, 4-Oxadiazole-Chalcone/Oxime Hybrids as Potential Antibacterial DNA Gyrase Inhibitors: Design, Synthesis, ADMET Prediction and Molecular Docking Study. Bioorganic Chemistry, 111, 104885. https://doi.org/10.1016/j.bioorg.2021.104885

Izadi, S., Hojjat-Farsangi, M., Karpisheh, V., & Jadidi-Niaragh, F. (2023). Pan Cyclin-Dependent Kinase Inhibitors for the Treatment of Breast Cancer. International Journal of Drug Research in Clinics, 1, e2. https://doi.org/10.34172/ijdrc.2023.e2

Jamel, N. M., Hussein, D. F., & Tomma, J. H. (2017). Synthesis and Characterization New Schiff Bases, Pyrazole and Pyrazoline Compounds Derived From Acid Hydrazide Containing Isoxazoline Ring. Ibn AL-Haitham Journal for Pure and Applied Science, 27(3), 435-447.

Kawsar, M., Taz, T. A., Paul, B. K., Mahmud, S., Islam, M. M., Bhuyian, T., & Ahmed, K. (2020). Analysis of Gene Network Model of Thyroid Disorder and Associated Diseases: A bioinformatics Approach. Informatics in Medicine Unlocked, 20, 100381. https://doi.org/10.1016/j.imu.2020.100381

Kombo, D. C., Tallapragada, K., Jain, R., Chewning, J., Mazurov, A. A., Speake, J. D., Hauser, T. A., & Toler, S. (2013). 3D Molecular Descriptors Important for Clinical Success. Journal of Chemical Information and Modeling, 53(2), 327-342. https://doi.org/10.1021/ci300445e

Li, S., Shao, Y., Chen, H., & Wang, J. (2022). Using Network Pharmacology to Systematically Decipher the Potential Mechanisms of Jisuikang in the Treatment of Spinal cord Injury. Evidence-Based Complementary and Alternative Medicine, 2022, 4932153. https://doi.org/10.1155/2022/4932153

Liu, J., Liu, J., Tong, X., Peng, W., Wei, S., Sun, T., Wang, Y., Zhang, B., & Li, W. (2021). Network Pharmacology Prediction and Molecular Docking-based Strategy to Discover the Potential Pharmacological Mechanism of Huai Hua San against Ulcerative Colitis. Drug Design, Development and Therapy, 15, 3255-3276. https://doi.org/10.2147/DDDT.S319786

Liu, Y.-T., Sheng, J., Yin, D.-W., Xin, H., Yang, X.-M., Qiao, Q.-Y., & Yang, Z.-J. (2018). Ferrocenyl Chalcone-based Schiff bases and their Metal Complexes: Highly Efficient, Solvent-free Synthesis, Characterization, Biological Research. Journal of Organometallic Chemistry, 856, 27-33. https://doi.org/10.1016/j.jorganchem.2017.12.022

Luo, Y., Song, R., Li, Y., Zhang, S., Liu, Z.-J., Fu, J., & Zhu, H.-L. (2012). Design, Synthesis, and Biological Evaluation of halcone Oxime Derivatives as Potential Immunosuppressive Agents. Bioorganic & Medicinal Chemistry Letters, 22(9), 3039-3043. https://doi.org/10.1016/j.bmcl.2012.03.080

Morales, A. M., Mukai, R., Murota, K., & Terao, J. (2018). Inhibitory Effect of Catecholic Colonic Metabolites of Rutin on Fatty acid Hydroperoxide and Hemoglobin Dependent Lipid Peroxidation in Caco-2 Cells. Journal of Clinical Biochemistry and Nutrition, 63(3), 175-180. https://doi.org/10.3164/jcbn.18-38

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256

Muleta, F., & Desalegn, T. (2022). Synthesis, In Silico, and Biological Applications of Novel Heteroleptic Copper (II) Complex of Natural Product-Based Semicarbazone Ligands. Journal of Chemistry, 2022, 1497117. https://doi.org/10.1155/2022/1497117

Pacey, S., Sarker, D., & Workman, P. (2008). Pharmacokinetics and pharmacodynamics in drug development. In M. Schwab (Eds.), The Encyclopedia of Cancer (pp. 2306-2309). Berlin, Germany: Springer.

Pires, D. E. V., Kaminskas, L. M., & Ascher, D. B. (2018). Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand. In M. Gore, U. B. Jagtap (Eds.), Computational Drug Discovery and Design (pp. 271-284) Berlin, Germany: Springer. https://doi.org/10.1007/978-1-4939-7756-7_14

Radhakrishnan, S. K., Shimmon, R. G., Conn, C., & Baker, A. T. (2016). Evaluation of Novel Chalcone Oximes as Inhibitors of Tyrosinase and Melanin Formation in B16 Cells. Archiv der Pharmazie, 349(1), 20-29. https://doi.org/10.1002/ardp.201500298

Raju, S. K., Kumar, S., Sekar, P., Sundhararajan, N., & Nagalingam, Y. (2023). Ligand Based Multi-Targeted Molecular Docking Analysis of Terpenoid Phytoconstituents as Potential Chemotherapeutic Agents Against Breast Cancer: An In Silico Approach. Journal of Pharmaceutical Research, 22(2), 55-62. https://doi.org/10.18579/jopcr/v22.2.23.5

Riazimontazer, E., Sadeghpour, H., Nadri, H., Sakhteman, A., Küçükkılınç, T. T., Miri, R., & Edraki, N. (2019). Design, Synthesis and Biological Activity of Novel Tacrine-Isatin Schiff base Hybrid Derivatives. Bioorganic Chemistry, 89, 103006. https://doi.org/10.1016/j.bioorg.2019.103006

Rohini, C., Arasan, K. T., Jagadeeshbabu, V., & Saritha, M. (2021). Synthesis and IR Spectroscopic Characterization of some synthesized Chalcone linked Isatin Derivatives -Based Schiff Bases. International Journal of Current Research, 13(10), 19355-19357.

Sekar, P., Kumar, S., & Raju, S. K. (2023a). An Updated Review on Recent Advancements in the Diverse Biological Applications of Medicinally Privileged Scaffold: Chalcone and its Derivatives. International Journal of Medical Sciences and Pharma Research, 9(1), 7-20. https://doi.org/10.22270/ijmspr.v9i1.61

Sekar, P., Kumar, S., & Raju, S. K. (2023b). A Review on Chemistry, Synthesis and Biological Applications of Chalcone-based Schiff Bases. Journal of Drug Delivery and Therapeutics, 13(3), 145-154. https://doi.org/10.22270/jddt.v13i3.5969

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504. https://doi.org/10.1101/gr.1239303

Shawky, E. (2019). Prediction of Potential Cancer-related Molecular Targets of North African Plants Constituents using Network Pharmacology-based Analysis. Journal of Ethnopharmacology, 238, 111826. https://doi.org/10.1016/j.jep.2019.111826

Siddiqui, E. J., Azad, I., Khan, A. R., & Khan, T. (2019). Thiosemicarbazone Complexes as Versatile Medicinal Chemistry Agents: a Review. Journal of Drug Delivery and Therapeutics, 9(3), 689-703.

Soman, S. S., & Jain, P. (2022). Design, Synthesis and Study of Calamitic Liquid Crystals containing Chalcone and Schiff Base Linkages along with Terminal Alkoxy Chain. Journal of Advanced Scientific Research, 13(4), 59-68. https://doi.org/10.55218/JASR.202213411

Susanti, N. M. P., & Tjahjono, D. H. (2021). Cyclin-dependent Kinase 4 and 6 Inhibitors in Cell Cycle Dysregulation for Breast Cancer Treatment. Molecules, 26(15), 4462. https://doi.org/10.3390/molecules26154462

Thakare, A. P., & Mandlik, P. R. (2017). Co(II), Ni(II), Cu(II) And Cr(III) Complexes Of Heterocyclic Schiff Base Ligand: Synthesis, Spectroscopic And Thermal Study. International Journal of Advanced Research and Publications, 1(2), 1-5.

Thakare, A. P., & Mandlik, P. R. (2021). Synthesis, Spectroscopic and Thermal Studies of Fe(III) and VO(IV) Complexes of Heterocyclic Schiff Base Ligand. Indian Journal of Advances in Chemical Science, 5(4), 318-323.

Vadivelu, A., Saranya, A., & Gopal, V. (2014). Molecular Docking, Synthesis and Biological Evaluation of New Schiff Bases of 2, 3 Disubstituted Quinazolinone Derivatives. International Journal of Pharmacy & Therapeutics, 5(2), 90-99.

Vyas, S. P. (2018). Synthesis and Characterization of New Schiff-Base Derived from (2Z)-1-(2, 4-Dimethylphenyl)-3-(4-Hydroxy-3-Methoxyphenyl) Prop-2-En-1-One. Journal of Chemical and Pharmaceutical Research, 10(1), 200-202.

Vyas, S. P., Daraji, K. M., Darji, P., Patel, P. A., Goswami, T. K., & Goswami, K. V. (2016). Preparation and Characterizations of (2e)-1-(4-{(E)- [(3,4,5- Trimethoxy Phenyl) Methylidene]Amino}Phenyl)- 3-Phenylprop-2-En-1-One. World Journal of Pharmaceutical Research, 5(5), 928-31.

Published

27-03-2024

How to Cite

Sekar, P., S. Arivanantham, P. Jaishankar, N. Sundhararajan, Y. Nagalingam, and S. K. Raju. “Graph Theoretical Analysis, Pharmacoinformatics and Molecular Docking Investigation of Chalcone-Schiff Base Hybrids As Cyclin-Dependent Kinase Inhibitors”. Research in Pharmacy, vol. 14, Mar. 2024, doi:10.25081/rip.2024.v14.8801.

Issue

Section

Research Article