Somatic embryogenesis and optimization of regeneration system from immature embryos in maize inbred lines


  • Justus Anyieni Obara Department of Crops, Horticulture and Soils, Egerton University, P.O Box 536-20115, Egerton, Kenya
  • Richard Mulwa Department of Crops, Horticulture and Soils, Egerton University, P.O Box 536-20115, Egerton, Kenya
  • Maurice Oyoo Department of Crops, Horticulture and Soils, Egerton University, P.O Box 536-20115, Egerton, Kenya
  • Miriam Karwitha Department of Crops, Horticulture and Soils, Egerton University, P.O Box 536-20115, Egerton, Kenya



Maize, immature embryos, callus, Somatic embryogenesis, regeneration protocol


Maize production and productivity is on a sharp decline due to abiotic and abiotic stresses, therefore, an efficient regeneration protocol is an important tool that can contribute to maize improvement and gene-function studies to improve food security for the ever-growing population. The objective of this study was to optimize a regeneration system for CML 444 inbred line with CML 442 maize inbred line used as a reference. Callus was generated by incubation of immature embryos in Murashige and Skoog (MS) medium with vitamins supplemented with 0 - 4 g L-1 of 2, 4-D hormones, 900 mg L-1 proline, 250 mg L-1casein hydrolysate and 10 mg L-1 of filter sterilized AgNO3, 30 g L-l of sucrose and 3 g L-1 gelrite. Somatic embryo maturation was achieved by transferring 6-week old callus to MS medium with vitamins prepared as previously in callus induction with 60 g L-1 of sucrose and zero plant growth regulators (PGR). Shoot initiation was conducted in MS medium with vitamins supplemented with BAP, NAA at varied concentrations and a 0 mg L-1 control. Plants at a 3-leaf stage that had not rooted were transferred to MS media with vitamins with IBA at a concentration of 0 - 0.3 mg L–l. The 2, 4-D rates were significantly (p≤0.001) different for callus onset and callus induction. The genotype × rate interaction effects showed that 0 and 2 g L-1 2, 4-D had the lowest and highest mean, respectively in both lines during onset and induction of callus. The lines had significant (p≤0.001) effects on shooting induction, however, their means were not significantly different. Similarly, the means for the hormones were not significantly different for shooting induction. The lines, IBA rate and their interaction were significantly (p≤0.05) different for rooting induction. The means for the lines were significantly different for rooting induction in different IBA rates. Conversely, the mean for the IBA rates was significantly different for rooting induction. This study found that plant growth regulators rates during the callus induction stage play a key role during regeneration. This protocol was a success and could provide a fundamental platform for future transformation in this line.


Download data is not yet available.


Abebe, D. Z., Teffera, W., & Machuka, J. S. (2008). Regeneration of tropical maize lines (Zea mays L.) from mature zygotic embryo through callus initiation. African Journal of Biotechnology, 7(13), 2181-2186.

Ahmadabadi, M., Ruf, S., & Bock, R. (2007) A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Research, 16(4), 437-448.

Ali, F., Ahsan, M., Saeed, N. A., Ahmed, M., Ali, Q., Kanwal, N., Tehseen, M. M., Ijaz, U., Bibi, I., & Niazi, N. K. (2014). Establishment and optimization of callus-to-plant regeneration system using mature and immature embryos of maize (Zea mays L.). International Journal of Agriculture and Biology, 16(1), 111-117.

Anami, S. E., Mgutu, A. J., Taracha, C., Coussens, G., Karimi, M., Hilson, P., Lijsebettens, M. V., & Machuka, J. (2010). Somatic embryogenesis and plant regeneration of tropical maize genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 102(3), 285-295.

Armstrong, C. L., & Green, C. E. (1985). Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 164(2), 207-214.

Bi, R. M., Kou, M., Mao, S. R., & Wang, H. G. (2007). Plant regeneration through callus initiation from mature embryo of Triticum. Plant Breeding, 126(1), 9-12.

Binott, J. J., Songa, J. M., Ininda, J., Njagi, E. M., & Machuka, J. (2008). Plant regeneration from immature embryos of Kenyan maize in bread lines and their respective single cross hybrids through somatic embryogenic. African Journal of Biotechnology, 7(8), 981-987.

Bohorova, N., Fenell, S., McLean, S. Pellegrineschi, A., & Hoisington, D. (1999). Laboratory Protocols: CIMMYT Applied Genetic Engineering Laboratory. Mexico: CIMMYT

Brugière, N., Jiao, S., Hantke, S., Zinselmeier, C., Roessler, J. A., Niu, X., & Habben, J. E. (2003). Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiology, 132(3), 1228-1240.

Che, P., Lall, S., Nettleton, D., & Howell, S. H. (2006a). Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiology, 141(2), 620-637.

Che, P., Love, T. M., Frame, B. R., Wang, K., Carriquiry, A. L. & Howell, S. H. (2006b). Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Molecular Biology, 62(1-2), 1-14.

Chen, J., Xu, W., Velten, J., Xin, Z., & Stout, J. (2012). Characterization of maize inbred lines for drought and heat tolerance. Journal Soil Water Conservation, 67(5), 354–364.

Egertsdotter, U., Ahmad, I., & Clapham, D. (2019). Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Frontiers in Plant Science, 10, 109.

Gao, Y., Zhao, M., Wu, X. H., Li, D., Borthakur, D., Ye, J. H., & Lu, J. L. (2019). Analysis of differentially expressed genes in tissues of Camellia sinensis during dedifferentiation and root redifferentiation. Scientific Reports, 9(1), 1-11.

Gianazza, E., De ponti, P., Scienza, A., Villa, P., & Martinelli, L. (1992). Monitoring by two‐ dimensional electrophoresis somatic embryogenesis in leaf and petiole explants from Vitis. Electrophoresis, 13(4), 203‐209.

Grando, M. F., Varnier, M. L., Silva, M. R. D., Emydio, B. M., Pereira, L. R., & Suzin, M. (2013). Immature tassels as alternative explants in somatic embryogenesis and plant regeneration in south Brazilian maize genotypes. Acta Scientiarum. Agronomy, 35(1), 39-47.

Hodges, T., Kamo, K. K., Imbrie, C. W., & Becwar, M. R. (1986). Genotype specificity of somatic embryogenesis and regeneration in maize. Bio/Technology, 4(3), 219-223.

Holderbaum, D. F., Traavik, T. I., Nodari, R. O., & Guerra, M. P. (2019). Comparison of in vitro callus-cultures from transgenic maize AG-5011YG (MON810) and conventional near-isogenic maize AG-5011. Crop Breeding and Applied Biotechnology, 19(2), 169-175.

Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: mechanisms of induction and repression. The Plant Cell, 25(9), 3159-3173.

Ismaili, A., & Mohammadi, P. P. (2016). Effect of genotype, induction medium, carbohydrate source, and polyethylene glycol on embryogenesis in maize (Zea mays L.) anther culture. Acta Physiologiae Plantarum, 38, 74.

Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Inoue, Y., Seki, M., Sakakibara, H., Sugimoto, K., & Ohme-Takagi, M. (2011). The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology, 21(6), 508–514.

Jiao, P., Ma, R., Qi, Z., Jiang, Z., Liu, S., Qu, J., & Ma, Y. (2020). Optimization of callus induction conditions from immature embryos in maize and plant regeneration. Phyton, 88(3), 121-130.

Krakowsky, M. D., Lee, M., Garay, L., Woodman-Clikeman, W., Long, M. J., Sharopova, N., & Wang, K. (2006). Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theoretical and Applied Genetics, 113(5), 821-830.

Kumar, G., Sreenu, P., Sridevi, M., Reddy, M. K., & Kumar, P. (2018). Coleoptilar node - A season-independent explant source for in vitro culture in maize (Zea mays L.). Journal of Applied Biology and Biotechnology, 6(3), 20-28.

Leva, A. R., Petruccelli, R., & Rinaldi, L. M. R. (2012). Somaclonal variation in tissue culture: a case study with olive. Recent Advances in Plant in vitro Culture, 7, 123-150.

Liliane, T. N., & Charles, M. S. (2020). Factors Affecting Yield of Crops. Agronomy-Climate Change & Food Security, 9.

Malini, N., Ananadakumar, C. R., & Ramakrishnan, S. H. (2015). Regeneration of Indian maize genotypes (Zea mays L.) from immature embryo culture through callus induction. Journal of Applied and Natural Science, 7(1), 131-137.

Manivannan, A., Kaul, J., Singode, A., & Dass, S. (2010). Callus induction and regeneration of elite Indian maize inbreds. African Journal of Biotechnology, 9(44), 7446-7452.

Masters, A., Kang, M., McCaw, M., Zobrist, J. D., Gordon-Kamm, W., Jones, T., & Wang, K. (2020). Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. Journal of Visualized Experiments, 156.

Morocz, C., Donn, G., Nemeth, J., & Dudits, D. (1990). An improved system to obtain fertile regenerates via maize protoplast isolated from highly embryogenic suspension culture. Theoretical and Applied Genetics, 80(6), 721-726.

Mostafa, H. H., Wang, H., Song, J., & Li, X. (2020). Effects of genotypes and explants on garlic callus production and endogenous hormones. Scientific Reports, 10(1), 1-11.

Muppala, S., Gudlavalleti, P. K., Pagidoju, S., Malireddy, K. R., Puligandla, S. K., & Dasari, P. (2020). Distinctive response of maize (Zea mays L.) genotypes in vitro with the acceleration of phytohormones. Journal of Plant Biotechnology, 47(1), 26-39.

Mushke, R., Yarra, R., & Bulle, M. (2016). Efficient in vitro direct shoot organogenesis from seedling derived split node explants of maize (Zea mays L.). Journal of Genetic Engineering and Biotechnology, 14(1), 49-53.

Olawuyi, O. J., Dalamu, O., & Olowe, O. M. (2019). In vitro regeneration and proliferation of maize (Zea mays L.) genotypes through direct organogenesis. Journal of Natural Sciences Research, 9(6), 65-73.

Ombori, O., Gitonga, N. M., & Machuka, J. (2008). Somatic embryogenesis and plant regeneration from immature embryos of tropical maize (Zea mays L.) inbred lines. Biotechnology, 7(2), 224-232.

Pareddy, D. R., & Petolino, J. F. (1990). Somatic embryogenesis and plant regeneration from immature inflorescences of several elite inbreds of maize. Plant Science, 67(2), 211-219.

Pathi, K. M., Tula, S., Huda, K. M. K., Srivastava, V. K., & Tuteja, N. (2013). An efficient and rapid regeneration via multiple shoot induction from mature seed derived embryogenic and organogenic callus of Indian maize (Zea mays L.). Plant Signaling & Behavior, 8(10), e25891.

Pervin, M. M., Azad, M. A. K., Arifuzzaman, M., Rahman, M. A., Shovon, S. R., & Ali, M. K. (2019). Regeneration of Plant through embryo culture from promising maize (Zea mays L.) Inbred Lines. Acta Scientific Agriculture, 3(11), 55-61.

Rufino, C. A., Fernandes-Vieira, J., Martín-Gil, J., Junior, J. S. A., Tavares, L. C., Fernandes-Correa, M., & Martín-Ramos, P. (2018). Water stress influence on the vegetative period yield components of different maize genotypes. Agronomy, 8(8), 151.

Sairam, R. V., Parani, M., Franklin, G., Lifeng, Z., Smith, B., MacDougall, J., & Wilber, C. (2003). Shoot meristem: an ideal explant for Zea mays L. transformation. Genome, 46(2), 323-329.

Santos, A. O., Nuvunga, J. J., Silva, C. P., Pires, L. P. M., Von Pinho, R. G., Guimarães, L. J. M., & Balestre, M. (2017). Maize hybrid stability in environments under water restriction using mixed models and factor analysis. Genetics and Molecular Research, 16(2).

Saputro, T. B., Dianawati, S., Sholihah, N. F., & Ermavitalini, D. (2017, June). Genetic diversity of improved salt tolerant calli of maize (Zea mays L.) using RAPD. AIP Conference Proceedings (Vol. 1854, No. 1, p. 020033). AIP Publishing LLC.

Tiwari, S., Agrawal, P. K., Pande, V., & Gupta, H. S. (2015). Callus induction and whole plant regeneration in sub-tropical maize (Zea mays L.) using mature embryos as explants. Indian Journal of Genetics and Plant Breeding, 75(3), 330-335.

Tomes, D. T., & Smith, O. S. (1985). The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theoretical and Applied Genetics, 70(5), 505-509.

Tuskan, G. A., Mewalal, R., Gunter, L. E., Palla, K. J., Carter, K., Jacobson, D. A., & Muchero, W. (2018). Defining the genetic components of callus formation: A GWAS approach. PloS One, 13(8), e0202519.

Wang, H., Cheng, J., Cheng, Y., & Zhou, X. (2012). Study progress on tissue culture of maize mature embryo. Physics Procedia, 25, 2225-2227.

Wang, Q. M., & Wang, L. (2012). An evolutionary view of plant tissue culture: somaclonal variation and selection. Plant Cell Reports, 31(9), 1535-1547.

Willman, M. R., Schroll, S., & Hodges, T. K. (1989). Inheritance of somatic embryogenesis and plantlet regeneration from primary (type 1) callus in maize. In Vitro Cellular and Developmental Biology, 25(1), 95-100.



How to Cite

Obara, J. A., R. Mulwa, M. Oyoo, and M. Karwitha. “Somatic Embryogenesis and Optimization of Regeneration System from Immature Embryos in Maize Inbred Lines”. Research in Biotechnology, vol. 13, June 2022, pp. 1-10, doi:10.25081/rib.2022.v13.7490.



Research Articles