Effect of abscisic acid on rice defense mechanism against Fusarium oxysporum

Authors

  • Guo Peng College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Yang Ming Xiu College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Li Yun Peng College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Haseeb Younis College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Ni Zhe College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Xu Xiao Feng College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Liu Qing Ran College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Xiong Tian Liang College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Zhang Jun Hua College of Agriculture, Northeast Agricultural University, Harbin 150030, China

DOI:

https://doi.org/10.25081/jp.2024.v16.8774

Keywords:

Abscisic acid, Enzymatic activity, Fluridone, Gene expressions, Malondialdehyde, Plant defense, Rice seedling blight

Abstract

Fusarium oxysporum is one of the most destructive pathogens which causes rice seedling blight. ABA is part of a large signaling system that provides an effective system against microbial and environmental manipulations. The role of ABA in plant defense mechanisms is not clear. In this experiment, we prove the role of abscisic acid (ABA) in boosting rice plant resistance against F. oxysporum and optimizing ABA concentrations against F. oxysporum. This study is divided into two experiments. In the first experiment, we used various ABA concentrations of 0.0, 0.05, 0.1, 0.2, and 0.25 mmol/L under F. oxysporum stress. In the second experiment, we use Fluridone FLD as an ABA inhibitor with the following treatments, (F) is only applied with F. oxysporum (ABA+F), abscisic acid with F. oxysporum (ABAI+F), ABA inhibitor Fluridone with F. oxysporum (ABAI), where only ABA inhibitor Fluridone was applied and CK was used as a control. The results revealed that all the plants treated with ABA exhibit better performance against F. oxysporum, except those treated without ABA. ABA concentrations of 0.2 mmol/L effectively decreased the disease index and disease incidence rate as well as improved the quality of seedlings. ABA effectively increased the activity of defense-related enzymes like PPO, POD, PAL and SOD. ABA also lowers down the MDA content which proves its effectiveness against F. oxysporum. ABA resistance was also proved by plants treated with the abscisic acid inhibitor ABAI (Fluridone FLD). The ABA inhibitor reduced the rice resistance to F. oxysporum, by conforming the expression of defense-related genes PRB1-3, PRBI-2 and Xa39(t). These gene expressions indicate the involvement of ABA in plant defense system.

Downloads

Download data is not yet available.

References

Adie, B. A. T., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sanchez-Serrano, J.-J., Schmelz, E. A., & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. The Plant Cell, 19(5), 1665-1681. https://doi.org/10.1105/tpc.106.048041

Agarwal, P. K., & Jha, B. (2010). Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biologia Plantarum, 54, 201-212. https://doi.org/10.1007/s10535-010-0038-7

Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R., & Kazan, K. (2004). Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. The Plant Cell, 16(12), 3460-3479. https://doi.org/10.1105/tpc.104.025833

Aoki, T., O'Donnell, K., & Geiser, D. M. (2014). Systematics of key phytopathogenic Fusarium species: Current status and future challenges. Journal of General Plant Pathology, 80(3), 189-201. https://doi.org/10.1007/s10327-014-0509-3

Boba, A., Kostyn, K., Kozak, B., Wojtasik, W., Preisner, M., Prescha, A., Gola, E. M., Lysh, D., Dudek, B., Szopa, J., & Kulma, A. (2020). Fusarium oxysporum infection activates the plastidial branch of the terpenoid biosynthesis pathway in flax, leading to increased ABA synthesis. Planta, 251, 50. https://doi:10.1007/s00425-020-03339-9

Boba, A., Kostyn, K., Preisner, M., Wojtasik, W., Szopa, J., & Kulma, A. (2018). Expression of heterologous lycopene β-cyclase gene in flax can cause silencing of its endogenous counterpart by changes in gene-body methylation and in ABA homeostasis mechanism. Plant Physiology and Biochemistry, 127, 143-151. https://doi.org/10.1016/j.plaphy.2018.03.023

Chandrakar, V., Dubey, A., & Keshavkant, S. (2018). Modulation of arsenic-induced oxidative stress and protein metabolism by diphenyleneiodonium, 24-epibrassinolide and proline in Glycine max L. Acta Botanica Croatica, 77(1), 51-61. https://doi.org/10.2478/botcro-2018-0004

Das, K. K., Panda, D., Nagaraju, M., Sharma, S. G., & Sarkar, R. K. (2004). Antioxidant enzymes and aldehyde releasing capacity of rice cultivars (Oryza sativa L.) as determinants of anaerobic seedling establishment capacity. Bulgarian Journal of Plant Physiology, 30(1-2), 34-44.

Di, X., Takken, F. L. W., & Tintor, N. (2016). How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum. Frontiers in Plant Science, 7, 170. https://doi.org/10.3389/fpls.2016.00170

García‐Andrade, J., Ramírez, V., Flors, V., & Vera, P. (2011). Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen‐induced callose deposition. The Plant Journal, 67(5), 783-794. https://doi.org/10.1111/j.1365-313X.2011.04633.x

Geetha, N. P., Amruthesh, K. N., Sharathchandra, R. G., & Shetty, H. S. (2005). Resistance to downy mildew in pearl millet is associated with increased phenylalanine ammonia lyase activity. Functional Plant Biology, 32(3), 267-275. https://doi.org/10.1071/FP04068

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant physiology, 59(2), 315-318. https://doi.org/10.1104/pp.59.2.315

Hauser, F., Waadt, R., & Schroeder, J. I. (2011). Evolution of abscisic acid synthesis and signaling mechanisms. Current Biology, 21(9), 346-355. https://doi.org/10.1016/j.cub.2011.03.015

Jiang, M., & Zhang, J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 42(11), 1265-1273. https://doi.org/10.1093/pcp/pce162

Kim, T.-H., Hauser, F., Ha, T., Xue, S., Böhmer, M., Nishimura, N., Munemasa, S., Hubbard, K., Peine, N., Lee, B., Lee, S., Robert, N., & Parker, J. E., & Schroeder, J. I. (2011). Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Current Biology, 21(11), 990-997. https://doi.org/10.1016/j.cub.2011.04.045

León, J., Rojo, E., & Sánchez‐Serrano, J. J. (2001). Wound signalling in plants. Journal of Experimental Botany, 52(354), 1-9. https://doi.org/10.1093/jexbot/52.354.1

Liao, C. M., Li, J., Liu, X. H., & Zhang, Y. S. (2014). An effective method for extracting total RNA from Dioscorea opposite Thunb. Genetics and Molecular Research, 13(1), 462-468. https://doi.org/10.4238/2014.January.21.15

Lievens, L., Pollier, J., Goossens, A., Beyaert, R., & Staal, J. (2017). Abscisic acid as pathogen effector and immune regulator. Frontiers in Plant Science, 8, 587. https://doi.org/10.3389/fpls.2017.00587

Lim, C. W., & Lee, S. C. (2015). Arabidopsis abscisic acid receptors play an important role in disease resistance. Plant Molecular Biology, 88, 313-324. https://doi.org/10.1007/s11103-015-0330-1

Liu, Z., Li, X., Sun, F., Zhou, T., & Zhou, Y. (2017). Overexpression of OsCIPK30 enhances plant tolerance to Rice stripe virus. Frontiers in Microbiology, 8, 2322. https://doi.org/10.3389/fmicb.2017.02322

Maksimov, I. V. (2009). Abscisic acid in the plants-pathogen interaction. Russian Journal of Plant Physiology, 56, 742-752. https://doi.org/10.1134/S102144370906003X

Peleg, Z., & Blumwald, E. (2001). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290-295. https://doi.org/10.1016/j.pbi.2011.02.001

Rao, M. V., Paliyath, G., & Ormrod, D. P. (1996). Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology, 110(1), 125-136. https://doi.org/10.1104/pp.110.1.125

Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317-343. https://doi.org/10.1146/annurev-phyto-073009-114447

Ryerson, E., Li, A., Young, J. P., & Heath, M. C. (1993). Changes in abscisic acid levels in bean leaves during the initial stages of host and nonhost reactions to rust fungi. Physiological and Molecular Plant Pathology, 43(4), 265-273. https://doi.org/10.1006/pmpp.1993.1056

Şirin, S., & Aslım, B. (2019). Determination of antioxidant capacity, phenolic acid composition and antiproliferative effect associated with phenylalanine ammonia lyase (PAL) activity in some plants naturally growing under salt stress. Medicinal Chemistry Research, 28, 229-238. https://doi.org/10.1007/s00044-018-2278-6

Soliva, R. C., Elez, P., Sebastián, M., & Martı́n, O. (2000). Evaluation of browning effect on avocado purée preserved by combined methods. Innovative Food Science and Emerging Technologies, 1(4), 261-268. https://doi.org/10.1016/S1466-8564(00)00033-3

Spence, C. A., Lakshmanan, V., Donofrio, N., & Bais, H. P. (2015). Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae. Frontiers in Plant Science, 6, 1082. https://doi.org/10.3389/fpls.2015.01082

Swarupa, V., Ravishankar, K. V., & Rekha, A. (2014). Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta, 239, 735-751. https://doi.org/10.1007/s00425-013-2024-8

Tjamos, E. C. (1989). Problems and Prospects in Controlling Verticillium Wilt. Vascular Wilt Diseases of Plants, 28, 441-456. https://doi.org/10.1007/978-3-642-73166-2_33

Ton, J., Flors, V., & Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends in Plant Science, 14(6), 310-317. https://doi.org/10.1016/j.tplants.2009.03.006

Vleesschauwer, D. D., Yang, Y., Cruz, C. V., & Höfte, M. (2010). Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiology, 152(4), 2036-2052. https://doi.org/10.1104/pp.109.152702

Voigt, C. A. (2014). Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science, 5, 168. https://doi.org/10.3389/fpls.2014.00168

Wang, F., Cui, X., Sun, Y., & Dong, C.-H. (2013). Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Reports, 32, 1099-1109. https://doi.org/10.1007/s00299-013-1421-6

Wang, S., Zhang, G., Zhang, Y., Song, Q., Chen, Z., Wang, J., Guo, J., Niu, N., Wang, J., & Ma, S. (2015). Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat (Triticum aestivum L.). Journal of Experimental Botany, 20, 6191-6203. https://doi.org/10.1093/jxb/erv322

Xu, G., Yang, S., Meng, L., & Wang, B. G. (2018). The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Scientific Reports, 8, 6504. https://doi.org/10.1038/s41598-018-24770-9

Xu, M.-R., Cruz, C. M. V., Fu, B.-Y., Zhu, L.-H., Zhou, Y.-L., & Li, Z.-K. (2011). Different patterns of gene expression in rice varieties undergoing a resistant or susceptible interaction with the bacterial leaf streak pathogen. African Journal of Biotechnology, 10(65), 14419-14438. https://doi.org/10.5897/AJB11.1317

Zeyen, R. J., Kruger, W. M., Lyngkjær, M. F., & Carver, T. L. (2002). Differential effects of D-mannose and 2-deoxy-D-glucose on attempted powdery mildew fungal infection of inappropriate and appropriate G ramineae. Physiological and Molecular Plant Pathology, 61(6), 315-323. https://doi.org/10.1006/pmpp.2003.0444

Zhang, F., Zhuo, D.-L., Zhang, F., Huang, L.-Y., Wang, W.-S., Xu, J.-L., Cruz, C. V., Li, Z.-K., & Zhou, Y.-L. (2015). Xa39, a novel dominant gene conferring broad‐spectrum resistance to Xanthomonas oryzae pv. oryzae in rice. Plant Pathology, 64(3), 568-575. https://doi.org/10.1111/ppa.12283

Published

12-04-2024

How to Cite

Peng, G., Xiu, Y. M., Peng, L. Y. ., Younis, H., Zhe, N., Feng, X. X., Ran, L. Q., Liang, X. T., & Hua, Z. J. (2024). Effect of abscisic acid on rice defense mechanism against Fusarium oxysporum. Journal of Phytology, 16, 64–75. https://doi.org/10.25081/jp.2024.v16.8774

Issue

Section

Articles