Entomotoxicity of ZnO NPs synthesized using Clausena anisata Hook.f. ex Benth(ulmaayii) leaf extract against maize weevil, Sitophilus zeamais Mostch (Coleoptera: Curculionidae)

Authors

  • Adugna Gindaba Department of Biology, College of Natural and Computational Sciences, Dambi Dollo University, P.O.Box. 260 Dambi Dollo, Ethiopia
  • Mulugeta Negeri Department of Plant Science, College of Agriculture and Veterinary Sciences, Ambo University, P.O.Box. 19 Ambo, Ethiopia
  • Abel Saka Department of Physics, College of Natural and Computational Science, Dambi Dollo University, P.O.Box. 260 Dambi Dollo, Ethiopia

DOI:

https://doi.org/10.25081/jp.2023.v15.8620

Keywords:

Clausena anisata, Characterization, Maize weevil, Entomotoxicity, Nanoparticles

Abstract

The application of leaf extract to synthesize nanoparticles has been taken as a green method. In this study, the potential for synthesizing zinc oxide nanoparticles (ZnO NPs) from Clausena anisata Hook.f. ex Benth. leaf extract was investigated. The source of zinc was zinc nitrate hexahydrate (Zn(NO3)2.6H2O). The characterization study was done by Ultraviolet–visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), Transmission electron microscope (TEM) and atomic force microscopy (AFM). The crystalline shape of nanoparticles is disclosed inside the XRD result, morphology is confirmed through SEM effects, and consequently, the ZnO NPs scale was predicted. ZnO NPs were synthesized to work against Sitophilus zeamais adults. A mortality count was carried out in 14 days and all the 3 dosages (0.2 g, 0.4 g and 0.6 g) were effective in killing S. zeamais. F1 progeny emergence was highly reduced in comparison to untreated control. Maize seeds were successfully germinated after treatment application with ZnO NPs.

Downloads

Download data is not yet available.

References

Abdelghany, T. M., Al-Rajhi, A. M. H., Yahya, R., Bakri, M. M., Al Abboud, M. A., Yahya, R., Qanash, H., Bazaid, A. S., & Salem, S. S. (2023). Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conversion and Biorefinery, 13, 417-430. https://doi.org/10.1007/s13399-022-03412-1

Ali, B., Saleem, M. H., Ali, S., Shahid, M., Sagir, M., Tahir, M. B., Qureshi, K. A., Jaremko, M., Selim, S., Hussain, A., Rizwan, M., Ishaq, W., & Rehman, M. Z. (2022). Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles. Frontiers in Plant Science, 13, 973782. https://doi.org/10.3389/fpls.2022.973782

Awika, J. M. (2011). Major Cereal Grains Production and use around the World. ACS Symposium Series, 1089, 1-13. https://doi.org/10.1021/bk-2011-1089.ch001

Aysa, N. H., & Salman, H. D. (2016). Antibacterial activity of modified zinc oxide nanoparticles against Pseudomonas aeruginosa isolates of burn infections. World Scientific News, 33, 1-14.

Banga, K. M. S., Kumar, S., Kotwaliwale, N., & Mohapatra, D. (2020). Major Insects of Stored Food Grains. International Journal of Chemical Studies, 8(1), 2380-2384. https://doi.org/10.22271/chemi.2020.v8.i1aj.8624

Barabadi, H., Ashouri, F., Soltani, M., Vaziri, N. A., Rabbanian, D., Saravanan, M., Vahidi, H., & Ansari, M. (2023). Bioengineered silver nanoparticles for antimicrobial therapeutics. In H. Barabadi, M. Saravanan, E. Mostafavi & H. Vahidi (Eds.), Bioengineered Nanomaterials for Wound Healing and Infection Control (pp. 443-473) Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-323-95376-4.00009-5

Bekele, J. (2002). Evaluation of the toxicity potential of Milletia ferruginea (Hochest) Baker against Sitophilus zeamais (Motsch.). International Journal of Pest Management, 48(1), 29-32. https://doi.org/10.1080/09670870110065253

Benelli, G. (2018). Mode of action of nanoparticles against insects. Environmental Science and Pollution Research, 25, 12329-12341. https://doi.org/10.1007/s11356-018-1850-4

Das, S., Yadav, A., & Debnath, N. (2019). Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): A comparative analysis. Journal of Stored Products Research, 83, 92-96. https://doi.org/10.1016/j.jspr.2019.06.003

Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S. C., & Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84, 99-105. https://doi.org/10.1007/s10340-010-0332-3

Deshwal, R., Vaibhav, V., Kumar, N., Kumar, A., & Singh, R. (2020). Stored Grain Insect Pests and Their Management: An Overview. Journal of Entomology and Zoology Studies, 8(5), 969-974.

Ebeling, W. (1971). Sorptive dusts for pest control. Annual Review of Entomology, 16, 123-158. https://doi.org/10.1146/annurev.en.16.010171.001011

Ebeling, W., & Wagner, R. E. (1959). Rapid desiccation of drywood termites in inert sorptive dusts and other substances. Journal of Economic Entomology, 52(2), 190-207. https://doi.org/10.1093/jee/52.2.190

Hiruy, B., & Getu, E. (2018). Efficacy of solvent extracts of Calpurnia aurea (Ait.) Benth and Milletia ferruginea (Hochest) Baker leaves against maize weevils, Sitophilus zeamais (Motsch.) of stored maize in Ethiopia. Journal of Stored Products and Postharvest Research, 9(3), 27-35.

Ibrahim, S. S., Elbehery, H. H., & Samy, A. (2022). Insecticidal Activity of ZnO NPs Synthesized by Green Method using Pomegranate Peels Extract on Stored Product Insects. Egyptian Journal of Chemistry, 65(4), 135-145. https://doi.org/10.21608/ejchem.2021.92692.4496

Ileke, K. D. (2014). Efficacy of some plants powder and extract in the management of Angoumois grain moth, Sitotroga cerealella (Olivier) [Lepidoptera: Gelechiidae] infesting stored wheat grains. Archives of Phytopathology and Plant Protection, 47(3), 330-338. https://doi.org/10.1080/03235408.2013.809897

Islam, F., Shohag, S., Uddin, M. J., Islam, M. R., Nafady, M. H., Akter, A., Mitra, S., Roy, A., Emran, T. B., & Cavalu, S. (2022). Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials, 15(6), 2160. https://doi.org/10.3390/ma15062160

Itroutwar, P. D., Kasivelu, G., Raguraman, V., Malaichamy, K., & Sevathapandian, S. K. (2020). Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatalysis and Agricultural Biotechnology, 29, 101778. https://doi.org/10.1016/j.bcab.2020.101778

Jabbar, K. Q., Barzinjy, A. A., & Hamad, S. M. (2022). Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environmental Nanotechnology, Monitoring & Management, 17, 100661. https://doi.org/10.1016/j.enmm.2022.100661

Jallow, M. F. A., Awadh, D. G., Albaho, M. S., Devi, V. Y., & Thomas, B. M. (2017). Pesticide Risk Behaviors and Factors Influencing Pesticide Use among Farmers in Kuwait. Science of the Total Environment, 574, 490-498. https://doi.org/10.1016/j.scitotenv.2016.09.085

Jeyabharathi, S., Naveenkumar, S., Chandramohan, S., Venkateshan, N., Gawwad, M. R. A., Elshikh, M. S., Rasheed, R. A., Al Farraj, D. A., & Muthukumaran, A. (2022). Biological synthesis of zinc oxide nanoparticles from the plant extract, Wattakaka volubilis showed anti-microbial and anti-hyperglycemic effects. Journal of King Saud University-Science, 34(3), 101881. https://doi.org/10.1016/j.jksus.2022.101881

Jothibas, M., Paulson, E., Mathivanan, A., Srinivasan, S., & Kannan, K. S. (2023). Biomolecules influences on the physiochemical characteristics of ZnO nanoparticles and its enhanced photocatalysis under solar irradiation. Nanotechnology for Environmental Engineering, 8, 511-533. https://doi.org/10.1007/s41204-023-00310-3

Kamaraj, C., Gandhi, P. R., Ragavendran, C., Sugumar, V., Kumar, R. C., Ranjith, R., Priyadharsan, A., & Cherian, T. (2022). Sustainable development through the bio-fabrication of ecofriendly ZnO nanoparticles and its approaches to toxicology and environmental protection. Biomass Conversion and Biorefinery, 2022, 1-17. https://doi.org/10.1007/s13399-022-03445-6

Keratum, A. Y., Arab, R. B. A., Ismail, A. A., & Nasr, G. M. (2015). Impact of nanoparticle zinc oxide and aluminum oxide against rice weevil Sitophilus Oryzae (Coleoptera: Curculionidae) under laboratory conditions. Egyptian Journal of Plant Protection Research, 3(3), 30-38.

Kumar, D., & Kalita, P. (2017). Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods, 6(1), 8. https://doi.org/10.3390/foods6010008

Kumar, S., Bhanjana, G., Sharma, A., Dilbaghi, N., Sidhu, M. C., & Kim, K.-H. (2017). Development of Nanoformulation Approaches for the Control of Weeds. Science of the Total Environment, 586, 1272-1278. https://doi.org/10.1016/j.scitotenv.2017.02.138

Luo, Y., Huang, D., Li, D., & Wu, L. (2020). On Farm Storage, Storage Losses and the Effects of Loss Reduction in China. Resources, Conservation and Recycling, 162, 105062. https://doi.org/10.1016/j.resconrec.2020.105062

Madhuri, S., Choudhary A. K., & Rohit, K. (2010). Nanotechnology in Agricultural Diseases and Food Safety. Journal of Phytology, 2(4), 83-92.

Mesterházy, Á., Oláh, J., & Popp, J. (2020). Losses in the Grain Supply Chain: Causes and Solutions. Sustainability, 12(6), 2342. https://doi.org/10.3390/su12062342

Muhammad, W., Ullah, N., Haroon, M., & Abbasi, B. H. (2019). Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Advances, 9(51), 29541-29548. https://doi.org/10.1039/C9RA04424H

Mustafa, I. F., & Hussein, M. Z. (2020). Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. Nanomaterials, 10(8), 1608. https://doi.org/10.3390/nano10081608

Naseer, M., Aslam, U., Khalid, B., & Chen, B. (2020). Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 10, 9055. https://doi.org/10.1038/s41598-020-65949-3

Nayak, M. K., Daglish, G. J., Phillips, T. W., & Ebert, P. R. (2020). Resistance to the Fumigant Phosphine and its Management in Insect Pests of Stored Products: a Global Perspective. Annual Review of Entomology, 65, 333-350. https://doi.org/10.1146/annurev-ento-011019-025047

Nguyen, N. T., Nguyen, N. T., & Nguyen, V. A. (2020). In situ synthesis and characterization of ZnO/chitosan nanocomposite as an adsorbent for removal of Congo red from aqueous solution. Advances in Polymer Technology, 2020, 3892694. https://doi.org/10.1155/2020/3892694

Nguyen, T. T., Collins, P. J., & Ebert, P. R. (2015). Inheritance and Characterization of strong Resistance to Phosphine in Sitophilus oryzae (L.). PloS One, 10(4), e0124335. https://doi.org/10.1371/journal.pone.0124335

Oso, A. A., & Ashafa, A. O. (2021). Nutritional Composition of Grain and Seed Proteins. In J. C. Jimenez-Lopez (Eds.), Grain and Seed Proteins Functionality London, UK: IntechOpen. https://doi.org/10.5772/intechopen.97878

Popa, M. L., Preda, M. D., Neacșu, I. A., Grumezescu, A. M., & Ginghină, O. (2023). Traditional vs. Microfluidic Synthesis of ZnO Nanoparticles. International Journal of Molecular Sciences, 24(3), 1875. https://doi.org/10.3390/ijms24031875

Poudel, S., Poudel, B., Acharya, B., & Poudel P. (2020). Pesticide Use and its Impacts on Human Health and Environment. Environment & Ecosystem Science, 4(1), 47-51. https://doi.org/10.26480/ees.01.2020.47.51

Pulit-Prociak, J., Chwastowski, J., Kucharski, A., & Banach, M. (2016). Functionalization of textiles with silver and zinc oxide nanoparticles. Applied Surface Science, 385, 543-553, https://doi.org/10.1016/j.apsusc.2016.05.167

Rajendran, S. (2002). Postharvest Pest Losses. In D. Pimentel (Eds.), Encyclopedia of Pest Management (pp. 654-656) New York, USA: Marcel Dekker.

Rajendran, S., & Sriranjini, V. (2008). Plant Products as Fumigants for Stored-Product Insect Control. Journal of Stored Products Research, 44(2), 126-135. https://doi.org/10.1016/j.jspr.2007.08.003

Rumbos, C. I., Sakka, M., Berillis, P., & Athanassiou, C. G. (2016). Insecticidal potential of zeolite formulations against three stored grain insects, particle size effect, adherence to kernels and influence on test weight of grains. Journal of Stored Products Research, 68, 93-101. https://doi.org/10.1016/j.jspr.2016.05.003

Saha, R., Dalapati, G.K., Chakrabarti, S., Karmakar, A., & Chattopadhyay, S. (2022). Yttrium (Y) doped ZnO nanowire/p-Si heterojunction devices for efficient self-powered UV-sensing applications. Vacuum, 202, p.111214.

Sahoo, M., Vishwakarma, S., Panigrahi, C., & Kumar, J. (2021). Nanotechnology: Current Applications and Future Scope in Food. Food Frontiers, 2(1), 3-22. https://doi.org/10.1002/fft2.58

Salem, A. A., Hamzah, A. M., & El-Taweelah, N. M. (2015). Aluminum and zinc oxides nanoparticles as a new method in controlling the red flour beetle, Tribolium castaneum (Herbest) compared to malathion insecticide. Journal of Plant Protection and Pathology, 6(1), 129-137.

Saravanan, A., Kumar, P. S., Hemavathy, R. V., Jeevanantham, S., Jawahar, M. J., Neshaanthini, J. P., & Saravanan, R. (2022). A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Chemosphere, 307, 135713. https://doi.org/10.1016/j.chemosphere.2022.135713

Sarwar, M. F., Sarwar, M. H., Sarwar, M., Qadri, N. A., & Moghal, S. (2013). The Role of Oilseeds Nutrition in Human Health: A Critical Review. Journal of Cereals and Oilseeds 4(8), 97-100. https://doi.org/10.5897/JCO12.024

Sen, M., & Mukherjee, M. (2023). Bioinspired and Green Synthesis of Nanostructures: A Sustainable Approach. New Jersey, US: John Wiley & Sons. https://doi.org/10.1002/9781394174928

Singh, J., Duttam, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanbiotechnology, 16, 84. https://doi.org/10.1186/s12951-018-0408-4

Sunny, N. E., & Shanmugam, V. K. (2021). Anti-blight effect of green synthesized pure and Ag-doped tin oxide nanoparticles from Averrhoa bilimbi fruit extract towards Xanthomonas oryzae-the leaf blight pathogen of rice. Inorganic Chemistry Communications, 133, 108866. https://doi.org/10.1016/j.inoche.2021.108866

Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A., Vinayagam, R., & Selvaraj, R. (2019). Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. Journal of Photochemistry and Photobiology B: Biology, 199, 111621. https://doi.org/10.1016/j.jphotobiol.2019.111621

Xie, Q., Gu, R., Lin, D., Liu, N., Qu, R., & Ge, F. (2022). In situ assay of interfacial interaction between ZnO nanoparticles and live cell disturbed by surfactants. Environmental Science & Technology, 56(18), 13066-13075. https://doi.org/10.1021/acs.est.2c02935

Yadav, J., Jasrotia, P., Kashyap, P. L., Bhardwaj, A. K., Kumar, S., Singh M., & Singh, G. P. (2021). Nanopesticides: Current Status and Scope for Application in Agriculture. Plant Protection Science, 58(1), 1-17. https://doi.org/10.17221/102/2020-PPS

Ye, C.-Y., & Fan, L. (2021). Orphan Crops and Their Wild Relatives in the Genomic Era. Molecular Plant, 14(1), 27-39. https://doi.org/10.1016/j.molp.2020.12.013

Yekkaluri, S. R., Konda, S., Velpula, D., Thida, R. K., Chidurala, S. C., Tumma, B. N., Nama, N. R., & Deshmukh, R. (2022). Comparative analysis of ZnO nanoparticle's specific capacitance in supercapacitors: The role of surfactant and stabilizing agent. Applied Surface Science Advances, 12, 100326. https://doi.org/10.1016/j.apsadv.2022.100326

Zafar, M. N., Dar, Q., Nawaz, F., Zafar, M. N., Iqbal, M., & Nazar, M. F. (2019). Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. Journal of Materials Research and Technology, 8(1), 713-725. https://doi.org/10.1016/j.jmrt.2018.06.002

Published

04-12-2023

How to Cite

Gindaba, A., Negeri, M., & Saka, A. (2023). Entomotoxicity of ZnO NPs synthesized using Clausena anisata Hook.f. ex Benth(ulmaayii) leaf extract against maize weevil, Sitophilus zeamais Mostch (Coleoptera: Curculionidae). Journal of Phytology, 15, 155–162. https://doi.org/10.25081/jp.2023.v15.8620

Issue

Section

Articles