Androgenesis in tomato (Solanum lycopersicum L.)-Effect of genotypes, microspore development stage, pre-treatments and media composition on induction of haploids
DOI:
https://doi.org/10.25081/jp.2023.v15.8366Keywords:
Androgenesis, Tomato, Haploid, Callus, CIF, Cold shockAbstract
Doubled haploid (DH) technology remarkably accelerates the crop breeding by obtaining homozygous lines in a single generation. The present study was targeted in generating haploid plants through androgenesis. Anthers from immature flower buds of six tomato genotypes viz., LE-1230, LE-1236, LE-1256 TLCV 2, PKM 1 and TNAU tomato hybrid CO 3 were used for induction of haploids. A preliminary study based on callus induction frequency (CIF), more than 5% was helpful in short listing flower bud size, pre-treatments and growth regulator combinations. Subsequently, anthers from two different sized flower buds (4 and 6 mm length), dissected either from fresh or pre-treated flower buds (2 and 5 days in dark at 4 °C or gamma irradiated) were inoculated in MS medium fortified with different growth regulators for callus induction. Among the genotypes, TLCV 2 had recorded the maximum CIF (38.80%) from anthers of 4 mm long flower buds followed by TNAU tomato hybrid CO 3 (34.70%). Throughout the study, anthers from 4 mm long flower buds responded the best for callus induction. Among the pre-treatments, anthers from gamma irradiated flower buds recorded the highest CIF (31.90%) when compared to others. Cold shock (4 °C) in dark to flower buds for 2 days had improved the CIF of anthers when compared to fresh in LE 1230, LE 1238, TLCV2 and TNAU tomato hybrid CO 3, but when the cold shock was increased to 5 days, invariably there was a reduction in CIF in all the six genotypes. TA 8 (MS + 2iP (0.5 mg L-1) + NAA (0.5 mg L-1)) medium was found to be the best for maximum CIF in LE 1230 and PKM1, TA1 (MS + 2iP (1.0 mg L-1) + IAA (2.0 mg L-1)) in LE 1238, LE 1256 and TNAU tomato hybrid CO 3 and TA7 (MS + 2iP (0.5 mg L-1) + Kinetin (1.5 mg L-1) + NAA (1.0 mg L-1)) for TLCV 2 genotypes. The callus induced was sub cultured at monthly intervals in the same medium for proliferation and later transferred to regeneration medium. A good number of shoots got regenerated only from anther calli of TNAU hybrid CO 3 that was sub cultured in MS medium fortified with Zeatin (0.5 mg L-1). The clumps of shoots induced were separated and inoculated in MS medium supplemented with GA3 (0.5 mg L-1) for shoot elongation. After 4-6 weeks, the elongated shoots were transferred to half strength MS medium enhanced with IBA (1 mg L-1). Profuse rooting from the base of the shoot was noticed in 4-5 weeks. The stomatal count with leaves from the diploid plants and in vitro plants observed were 3-4 and 1 respectively indicating the haploidy nature of in vitro plants.
Downloads
References
Adhikari, P. B., & Kang, W. H. (2017). Association of floral bud and anther size with microspore developmental stage in Campari tomato. Horticultural Science and Technology, 35(5), 608-617. https://doi.org/10.12972/kjhst.20170065
Alan, A. R., Celebi-Toprak, F., Lachin, A., Yildiz, D., Gozen, V., & Besirli, G. (2021). Doubled Haploid Broccoli (Brassica olearacea var. italica) Plants from Anther Culture. In J. M. Segui-Simarro (Eds.), Doubled Haploid Technology (Vol. 2, pp. 201-216) New York, US: Humana Press. https://doi.org/10.1007/978-1-0716-1335-1_12
Asadi, A., & Seguí-Simarro, J. M. (2021). Production of Doubled Haploid Plants in Cucumber (Cucumis sativus L.) Through Anther Culture. In J. M. Segui-Simarro (Eds.), Doubled Haploid Technology (Vol. 3, pp. 71-85) New York, US: Humana Press. https://doi.org/10.1007/978-1-0716-1331-3_4
Badulescu, A., Dumitru, A. M., Manolescu, A. E., Sumedrea, D. I., & Popescu, C. F. (2022). Androgenic ability and plant regeneration potential in some tomato varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12413. https://doi.org/10.15835/nbha50112413
Bal, U., & Abak, K. (2007). Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica, 158, 1-9. https://doi.org/10.1007/s10681-007-9427-1
Belogradova, K., Lewicka, I., Heberle-Bors, E., & Touraev, A. (2009). An overview on tobacco doubled haploids. Advances in Haploid Production in Higher Plants (pp. 75-85) Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-1-4020-8854-4_5
Binzel, M. L., Sankhla, N., Joshi, S., & Sankhla, D. (1996). Induction of direct somatic embryogenesis and plant regeneration in pepper (Capsicum annuum L.). Plant Cell Reports, 15, 536-540. https://doi.org/10.1007/BF00232989
Corral-Martínez, P., & Seguí-Simarro, J. M. (2012). Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica, 187, 47-61. https://doi.org/10.1007/s10681-012-0715-z
Dolcet-Sanjuan, R., Claveria, E., & Huerta, A. (1997). Androgenesis in Capsicum annuum L.- effects of carbohydrate and carbon dioxide enrichment. Journal of the American Society for Horticultural Science, 122(4), 468-475. https://doi.org/10.21273/JASHS.122.4.468
Don Palmer, C. E., & Keller, W. A. (2005). Overview of haploidy. In C. E. Palmer, W. A. Keller & K. J. Kasha (Eds.), Haploids in Crop Improvement II (Vol. 56, pp. 3-9) Heidelberg, Germany: Springer. https://doi.org/10.1007/3-540-26889-8_1
Dunwell, J. M. (2010). Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal, 8(4), 377-424. https://doi.org/10.1111/j.1467-7652.2009.00498.x
Dunwell, J. M., Cornish, M., De Courcel, A. G. L., & Middlefelll-Williams, J. E. (1983). Induction and growth of ‘microspore-derived’ embryos of Brassica napus ssp. Oleifera. Journal of Experimental Botany, 34(12), 1768-1778. https://doi.org/10.1093/jxb/34.12.1768
Eliby, S., Bekkuzhina, S., Kishchenko, O., Iskakova, G., Kylyshbayeva, G., Jatayev, S., Soole, K., Langridge, P., Borisjuk, N., & Shavrukov, Y. (2022). Developments and prospects for doubled haploid wheat. Biotechnology Advances, 60, 108007. https://doi.org/10.1016/j.biotechadv.2022.108007
FAOSTAT. (2020). FAO Statistics, Food and Agriculture Organization of the United Nations. Retrieved from http://faostat.fao.org/
González-Melendi, P., Germanà, M. A., Guarda, N. L., Chiancone, B., & Risueño, M. C. (2005). Correlation of sequential floral and male gametophyte development and preliminary results on anther culture in Opuntia ficus-indica. Acta Physiologiae Plantarum, 27, 687-694. https://doi.org/10.1007/s11738-005-0072-9
Gulshan, Varghese, T. M., & Sharma, D. R. (1981). Studies on anther cultures of tomato-Lycopersicon esculentum Mill. Biologia Plantarum, 23(6), 414-420. https://doi.org/10.1007/BF02880587
Hassan, M. F., & Islam, S. M. S. (2021). Effect of silver nitrate and growth regulators to enhance anther culture response in wheat (Triticum aestivum L.). Heliyon, 7(5), e07075. https://doi.org/10.1016/j.heliyon.2021.e07075
İlhan, M., & Kurtar, E. S. (2022). Doublehaploidization Efficiency of Selected Pepper Genotypes Via in Vitro Anther Culture. Selcuk Journal of Agriculture and Food Sciences, 36(2), 253-259. https://doi.org/10.15316/SJAFS.2022.033
Irikova, T., Grozeva, S., & Rodeva, V. (2011). Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiologiae Plantarum, 33, 1559-1570. https://doi.org/10.1007/s11738-011-0736-6
Jha, K., Choudhary, P. K., & Agarwal, A. (2021). Doubled haploid production in capsicum annuum l. using anther culture: A review. Plant Archives, 21(1), 168-173. https://doi.org/10.51470/PLANTARCHIVES.2021.V21.S1.031
Karimi-Ashtiyani, R. (2021). Centromere engineering as an emerging tool for haploid plant production: Advances and challenges. In J. M. Segui-Simarro (Eds.), Doubled Haploid Technology (Vol. 3, pp. 3-22) New York, US: Humana Press. https://doi.org/10.1007/978-1-0716-1331-3_1
Kašpar, V., Hubálek, M., Pšenička, M., Arai, K., Taggart, J. B., & Franěk, R. (2022). Cold-shock androgenesis in common carp (Cyprinus carpio). Aquaculture, 548, 737610. https://doi.org/10.1016/j.aquaculture.2021.737610
Kim, M., Jang, I.-C., Kim, J.-A., Park, E.-J., Yoon, M., & Lee, Y. (2008). Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Reports, 27, 425-434. https://doi.org/10.1007/s00299-007-0442-4
Kim, S.-J., Nam, C.-W., Yoo, D.-L., Ryu, S.-Y., & Kim, K.-S. (2004). Effect of Pre-treatment Solution on Iris hollandica Flower: Vase life, Anthocyanin Content, and Peroxidase Activity. HortScience, 39(4), 823A-823. https://doi.org/10.21273/HORTSCI.39.4.823A
Kiviharju, E., & Pehu, E. (1998). The effect of cold and heat pretreatments on anther culture of Avena sativa and A. Sterilis. Plant Cell Tissue Organ and Culture, 54, 97-104. https://doi.org/10.1023/A:1006167306638
Koleva-Gudeva, L., Trajkova, F., Dimeska, G., & Spasenoski, M. (2008). Androgenesis efficiency in anther culture of pepper (Capsicum annuum L.). Acta Horticulturae, 830, 183-190. https://doi.org/10.17660/ActaHortic.2009.830.25
Kotyal, K., Ghalagi, C., Namratha, M. R., & Raju, B. M. (2022). Pyramiding of drought adaptive traits and development of doubled haploids in the traits pyramided rice (Oryza sativa L.). Plant Physiology Reports, 27, 458-468. https://doi.org/10.1007/s40502-022-00671-y
Kumar, A., Kumar, V., Gull, A., & Nayik, G. A. (2020). Tomato (Solanum Lycopersicon). In G. A. Nayik & A. Gull (Eds.), Antioxidants in Vegetables and Nuts-Properties and Health Benefits (pp. 191-207) Gateway East, Singapore: Springer. https://doi.org/10.1007/978-981-15-7470-2_10
Marin-Montes, I. M., Rodríguez-Pérez, J. E., Robledo-Paz, A., de la Cruz-Torres, E., Peña-Lomelí, A., & Sahagún-Castellanos, J. (2022). Haploid Induction in Tomato (Solanum lycopersicum L.) via Gynogenesis. Plants, 11(12), 1595. https://doi.org/10.3390/plants11121595
Mir, R., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2021). Doubled haploids in eggplant. Biology, 10(7), 685. https://doi.org/10.3390/biology10070685
Morrison, R. A., Koning, R. E., & Evans, D. A. (1986). Anther culture of an interspecific hybrid of Capsicum. Journal of Plant Physiology, 126(1), 1-9. https://doi.org/10.1016/S0176-1617(86)80210-3
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Niazian, M., Shariatpanahi, M. E., Abdipour, M., & Oroojloo, M. (2019). Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma, 256, 1317-1332. https://doi.org/10.1007/s00709-019-01379-x
Nitsch, C., & Norreel, B. (1973). Factors favoring the formation of androgenetic embryos in anther culture. In A. M. Srb ( Eds.), Genes, Enzymes, and Populations (Vol. 2, pp. 129-144) Massachusetts, US: Springer. https://doi.org/10.1007/978-1-4684-2880-3_10
Patial, M., Chauhan, R., Chaudhary, H. K., Pramanick, K. K., Shukla, A. K., Kumar, V., & Verma, R. P. S. (2022). Au-courant and novel technologies for efficient doubled haploid development in barley (Hordeum vulgare L.). Critical Reviews in Biotechnology, 43(4), 575-593. https://doi.org/10.1080/07388551.2022.2050181
Phuong, N. T. D. (2021). Direct embryogenesis from anther culture of hot chilli Capsicum annuum L. Ho chi minh City Open University Journal of Science-Engineering and Technology, 11(1), 3-10. https://doi.org/10.46223/HCMCOUJS.tech.en.11.1.560.2021
Ramasamy, G., Ramasamy, S., Ravi, N. S., Krishnan, R., Subramanian, R., Raman, R., Duraialaguraja, S., Muthurajan, R., & Vellaichamy, J. (2022). Haploid embryogenesis and molecular detection of somatic embryogenesis receptor-like kinase (TcSERK) genes in sliced ovary cultures of cocoa (Theobroma cacao L.). Plant Biotechnology Reports, 16, 283-297. https://doi.org/10.1007/s11816-022-00756-y
Seguí-Simarro, J. M., & Nuez, F. (2005). Meiotic metaphase I to telophase II as the most responsive stage during microspore development for callus induction in tomato (Solanum lycopersicum) anther cultures. Acta Physiologiae Plantarum, 27, 675-685. https://doi.org/10.1007/s11738-005-0071-x
Seguí-Simarro, J. M., & Nuez, F. (2007). Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. Journal of Experimental Botany, 58(5), 1119-1132. https://doi.org/10.1093/jxb/erl271
Seguí-Simarro, J. M., Jacquier, N. M. A., & Widiez, T. (2021a). Overview of in vitro and in vivo doubled haploid technologies. In J. M. Seguí-Simarro (Eds.), Doubled Haploid Technology (Vol. 1, pp. 3-22) New York, US: Humana Press. https://doi.org/10.1007/978-1-0716-1315-3_1
Seguí-Simarro, J. M., Moreno, J. B., Fernández, M. G., & Mir, R. (2021b). Species with haploid or doubled haploid protocols. In Doubled Haploid Technology (Vol. 1, pp. 41-103) New York, US: Humana Press. https://doi.org/10.1007/978-1-0716-1315-3_3
Seguí-Simarro, J., & Nuez, F. (2008). Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenetic and Genome Research, 120(3-4), 358-369. https://doi.org/10.1159/000121085
Shariatpanahi, M. E., Bal, U., Heberle-Bors, E., & Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4), 519-534. https://doi.org/10.1111/j.1399-3054.2006.00675.x
Shtereva, L. A., Zagorska, N. A., Dimitrov, B. D., Kruleva, M. M., & Oanh, H. K. (1998). Induced androgenesis in tomato (Lycopersicon esculentum Mill). II. Factors affecting induction of androgenesis. Plant Cell Reports, 18(3), 312-317. https://doi.org/10.1007/s002990050578
Simeonova, N., Pandeva, R., & Zagorska, N. (1990). Pollen and anther cultures of pepper (Capsicum annuum L.). Vth international youth school, conference on genetics, Albena.
Sivachandran, R., Gnanam, R., Sudhakar, D., Suresh, J., & Ram, S. G. (2017). Influence of genotypes, stages of microspore, pre-treatments and media factors on induction of callus from anthers of cocoa (Theobroma cacao L.). Journal of Plantation Crops, 45(3), 162-172. https://doi.org/10.19071/jpc.2017.v45.i3.3340
Sood, S., Prasanna, P. S., Reddy, T. V., & Gandra, S. V. S. (2021). Optimized Protocol for Development of Androgenic Haploids and Doubled Haploids in FCV Tobacco (Nicotiana tabacum). In J. M. Seguí-Simarro (Eds.), Doubled Haploid Technology (Vol. 2, pp. 293-305) New York, US: Humana Press. https://doi.org/10.1007/978-1-0716-1335-1_18
Supena, E. D. J., Suharsono, S., Jacobsen, E., & Custers, J. B. M. (2006). Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Reports, 25, 1-10. https://doi.org/10.1007/s00299-005-0028-y
Thriveni, V., Sharma, D., Singh, J., Jha, Z., Sukla, N., & Saxena, R. R. (2020). The effect of cold preculture, media and incubation temperatures on callus induction via Antherculture in Brinjal (Solanum melongena L.). International Journal of Chemical Studies, 8(6), 2717-2722. https://doi.org/10.22271/chemi.2020.v8.i6am.11193
Touraev, A., Vicente, O., & Heberle-Bors, E. (1997). Initiation of microspore embryogenesis by stress. Trends in Plant Science, 2(8), 297-302. https://doi.org/10.1016/S1360-1385(97)89951-7
Vagera, J., & Havranek, P. (1985). In vitro induction of androgenesis in Capsicum annuum L. and its genetic aspects. Biologia Plantarum, 27, 10-21. https://doi.org/10.1007/BF02894626
Watts, A., Bondada, R., & Maruthachalam, R. (2023). Identification of Arabidopsis thaliana haploid plants by counting the chloroplast numbers in stomatal guard cells. Plant Physiology Reports, 28, 180-184. https://doi.org/10.1007/s40502-022-00706-4
Wetherell, D. F. (1984). Enhanced adventitive embryogenesis resulting from plasmolysis of cultured wild carrot cells. Plant Cell, Tissue and Organ Culture, 3, 221-227. https://doi.org/10.1007/BF00040341
Weyen, J. (2021). Applications of doubled haploids in plant breeding and applied research. In J. M. Segui-Simarro (Eds.), Doubled Haploid Technology (Vol. 1, pp. 23-39) New York, US: Humana Press. https://doi.org/10.1007/978-1-0716-1315-3_2
Published
How to Cite
Issue
Section
Copyright (c) 2023 Rohit Kambale, Gnanam Ramasamy, Rajagopal Balasubramanian, Saraswathi Thiruvenkatasamy, Vinusri Sekar

This work is licensed under a Creative Commons Attribution 4.0 International License.