Effect of media and gelling agents on shoot organogenesis of Liriope platyphylla

Authors

  • Young Chang Kim Research Policy Bureau, Convergence and Innovation Strategy Team, 300 Nongsaengmyeong-ro, Deokjingu, Jeonju-si, Jellabuk-do 54875, Republic of Korea
  • Woo Tae Park Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
  • Ramaraj Sathasivam Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
  • Haeng-Hoon Kim Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea
  • Jae Kwang Kim Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
  • Sang Un Park Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea

DOI:

https://doi.org/10.25081/jp.2023.v15.8319

Keywords:

Gelling agent, Shoot organogenesis, Liriope platyphylla, Plant agar, Gellan gum

Abstract

Liriope platyphylla can be multiplied either by planting seeds or dividing its tuberous roots. In this study, a method for L. platyphylla plant shoot organogenesis from meristem explants was developed employing medium and gelling agents. For the selection of optimal medium conditions for shoot organogenesis, the effects of full- and half-strength B5, SH, and MS media were examined. Different concentrations of the gelling agents such as phytagar (6, 7, 8, and 9 g L-1) and gellan gum (2, 3, 4, and 5 g L-1) were examined for efficient shoot formation. The results revealed the superiority of half-strength MS basal medium in shoot organogenesis and growth of Liriope platyphylla. But the half-strength B5 media performed poorly. Compared to plant agar, gellan gum performed well in terms of shoot regeneration and shoot length. When gellan gum was used at 3 g L-1 the maximum number of shoots explant-1 (5.8) and longest shoot (45.8 mm) was observed but the lowest number of shoots explant-1 (3.2) and shortest shoot (21.4 mm) was registered with 5 g L-1. It is proposed from our study that half-strength MS media and gellan gun gelling agent at 3 g/l could be applied in shoot organogenesis and growth of L. platyphylla.

Downloads

Download data is not yet available.

References

Bhatia, P., & Ashwath, N. (2005). Effect of medium pH on shoot regeneration from the cotyledonary explants of tomato. Biotechnology, 4(1), 7-10. https://doi.org/10.3923/biotech.2005.7.10

Boudaoud, A. (2010). An introduction to the mechanics of morphogenesis for plant biologists. Trends in Plant Science, 15(6), 353-360. https://doi.org/10.1016/j.tplants.2010.04.002

Brown, D. C., & Thorpe, T. A. (1986). Plant regeneration by organogenesis. In I. K. Vasil (Ed.), Cell Culture and Somatic Cell Genetics of Plants (pp. 49-65) New York, USA: Academic Press.

Buah, J. N., Kawamitsu, Y., Sato, S., & Murayama, S. (1999). Effects of different types and concentrations of gelling agents on the physical and chemical properties of media and the growth of banana (Musa spp.) in vitro. Plant Production Science, 2(2), 138-145. https://doi.org/10.1626/pps.2.138

Debergh, P., Aitken-christie, J., Cohen, D., Grout, B., Arnold, S.V., Zimmerman, R., & Ziv, M. (1992). Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell, Tissue and Organ Culture, 30, 135-140. https://doi.org/10.1007/BF00034307

Fleming, A. (2006). Metabolic aspects of organogenesis in the shoot apical meristem. Journal of Experimental Botany, 57(9), 1863-1870. https://doi.org/10.1093/jxb/erj178

Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151-158. https://doi.org/10.1016/0014-4827(68)90403-5

Han, J. H., Yoon, Y. H., Kang, D. J., & Lee, Y. S. (1993). Studies on improvement of cultural practices in Liriope platyphylla WANG et TANG-(3)-stimulation of seed germination and effects of seedling age on growth and tuber yield. Korean Journal of Medicinal Crop Science, 1(2), 120-124.

Huang, L.-C., Kohashi, C., Vangundy, R., & Murashige, T. (1995). Effects of common components on hardness of culture media prepared with gelrite. In Vitro Cellular & Developmental Biology - Plant, 31, 84-89. https://doi.org/10.1007/BF02632242

Hur, J., Lee, P., Kim, J., Kim, A. J., Kim, H., & Kim, S.Y. (2004). Induction of nerve growth factor by butanol fraction of Liriope platyphylla in C6 and primary astrocyte cells. Biological & Pharmaceutical Bulletin, 27(8), 1257-1260. https://doi.org/10.1248/bpb.27.1257

Hur, J., Lee, P., Moon, E., Kang, I., Kim, S.-H., Oh, M. S., & Kim. S.Y, (2009). Neurite outgrowth induced by spicatoside A, a steroidal saponin, via the tyrosine kinase A receptor pathway. European Journal of Pharmacology, 620(1-3), 9-15. https://doi.org/10.1016/j.ejphar.2009.08.016

Jiang, T., Huang, B.-K., Zhang, Q.-Y., Han, T., Zheng, H.-C., & Qin, L.-P. (2007a). Effect of Liriope platyphylla total saponin on learning, memory and metabolites in aging mice induced by D-galactose. Journal of Chinese Integrative Medicine, 5(6), 670-674. https://doi.org/10.3736/jcim20070614

Jiang, T., Huang, B.-K., Zhang, Q.-Y., Han, T., Zheng, H.-C., & Qin, L.-P. (2007b). Studies on chemical constituents of Liriope platyphylla. Zhong Yao Cai, 30(6), 1079-1081.

Kim, S. W., Oh, S. C., In, D. S., & Liu, J. R. (2000). High frequency somatic embryogenesis and plant regeneration in zygotic embryo cultures of Liriope platyphylla Wang et Tang. Plant Cell, Tissue and Organ Culture, 63, 227-229. https://doi.org/10.1023/A:1010783120412

Kim, S.-W., Chang, I.-M., & Oh, K.-B. (2002). Inhibition of the bacterial surface protein anchoring transpeptidase sortase by medicinal plants. Bioscience, Biotechnology, and Biochemistry, 66(12), 2751-2754. https://doi.org/10.1271/bbb.66.2751

Kim, W. K., Pyee, Y., Chung, H.-J., Park, H. J., Hong, J.-Y., Son, K. H., & Lee, S. K. (2016). Antitumor activity of spicatoside A by modulation of autophagy and apoptosis in human colorectal cancer cells. Journal of Natural Products, 79(4), 1097-1104. https://doi.org/10.1021/acs.jnatprod.6b00006

Mo, X. R., Zhu, C., Ren, X. M., Tang, Y. L., & Qian, P. (2000). The tissue culture of Liriope platyphylla Wang et Tang var. variegata Hort. Journal of Plant Resources and Environment, 9, 27-29.

Mohamed, G. M., Amer, A. M., Osman, N. H., Sedikc, M. Z., & Hussein, M. H. (2021). Effects of different gelling agents on the different stages of rice regeneration in two rice cultivars. Saudi Journal of Biological Science, 28(10), 5738-5744. https://doi.org/10.1016/j.sjbs.2021.06.003

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nery, L. A., Batista, D. S., Rocha, D. I., Sérgio, H. S. F., Matheus da Costa, Q., Priscila, O. S., Marília, C. V., & Wagner, C. O. (2021). Leaf development and anatomy of in vitro-grown Polygala paniculata L. are affected by light quality, gelling agents, and sucrose. Vegetos, 34, 19-28. https://doi.org/10.1007/s42535-021-00192-3

Park, C. H., Morgan, A. M. A., Park, B. B., Lee, S. Y., Lee, S., Kim, J. K., & Park, S. U. (2019). Metabolic analysis of four cultivars of Liriope platyphylla. Metabolites, 9(3), 59. https://doi.org/10.3390/metabo9030059

Park, H. R., Lee, H., Park, H., Jeon, J. W., Cho, W.-K., & Ma, J. Y. (2015). Neuroprotective effects of Liriope platyphylla extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. BMC Complementary and Alternative Medicine, 15, 171. https://doi.org/10.1186/s12906-015-0679-3

Park, W. T., Kim, Y.-K., Kim, Y. S., Park, N.-I., Lee, S.-Y., & Park, S. U. (2011). In vitro plant regeneration and micropropagation of Liriope platyphylla. Plant Omics, 4(4), 199-203.

Phillips, G. C., & Hubstenberger, J. F. (1995) Micropropagation by proliferation of axillary buds. In O. L. Gamborg & G. C. Phillips (Eds.), Plant cell, tissue and organ culture: fundamental methods (pp. 45-54) Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-79048-5_4

Prust, R., Awasthi, O. P., Singh, S. K., & Kumar, K. (2022). In vitro shoot organogenesis in sweet orange (Citrus sinensis L.) cv. Mosambi and the effect of ethylene adsorbents on micro-shoot quality. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-1730471/v1

Schenk, R.U., & Hildebrandt, A. C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50(1),199-204. https://doi.org/10.1139/b72-026

Stolz, L. P. (1971). Agar restriction of the growth of excised mature Iris embryos. Journal of American Society of Horticultural Science, 96(5), 618-684. https://doi.org/10.21273/JASHS.96.5.681

Wang, H.-C., Wu, C.-C., Cheng, T.-S., Kuo, C.-Y., Tsai, Y.-C., Chiang, S.-Y., Wong, T.-S., Wu, Y.-C., & Chang, F.-R. (2013). Active Constituents from Liriope platyphylla Root against Cancer Growth In Vitro. Evidence-Based Complementary and Alternative Medicine, 857929. https://doi.org/10.1155/2013/857929

Watanabe, Y., Sanada, S., Ida, Y., & Shoji, J. (1983). Comparative studies on the constituents of ophiopogonis tuber and Its congeners. I. studies of the constituents of the subterranean part of Liriope platyphylla Wang et Tang. Chemical and Pharmaceutical Bulletin, 31(6), 1980-1990. https://doi.org/10.1248/cpb.31.1980

Published

20-04-2023

How to Cite

Kim, Y. C., Park, W. T., Sathasivam, R., Kim, H.-H., Kim, J. K., & Park, S. U. (2023). Effect of media and gelling agents on shoot organogenesis of Liriope platyphylla. Journal of Phytology, 15, 52–56. https://doi.org/10.25081/jp.2023.v15.8319

Issue

Section

Articles