Effect of culture media and auxin on growth and glucosinolate accumulation in the hairy root cultures of mustard (Brassica juncea)

Authors

  • Sun Ju Bong Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
  • Jennifer Park Faculty of art and science, University of Toronto, 27 King’s College Cir, Toronto, ON M5S 1A1, Canada
  • Do Yeon Kwon Biotechnology Research Institute, Euseed Inc, 9 Bokyong-ro, Yuseong-gu, Daejeon, 34161, Republic of Korea

DOI:

https://doi.org/10.25081/jp.2022.v14.8138

Keywords:

Auxin, GSLs, Growth media, Hairy root, Mustard

Abstract

Brassica juncea is a vegatable that are rich in glucosinolate (GSL) content. The hairy root (HR) cultures system is one of the most useful tools for secondary metabolites (SM) biosynthesis under various growth conditions. In the past, GSLs were mostly used as biopesticides in agriculture, anti-nutritional factors in fodder, and flavors in condiments. However, in recent days, GLSs have received much attention in human health. To investigate the growth response and variation of GSLs accumulation, HRs of mustard were grown in different growth media and auxins. The HRs growth pattern varied largely under the treatments of growth media and auxin. The full-strength SH media responded greatly for achieving the highest dry weight (DW) followed by the ½ SH media and the lowest DW was obtained in full-strength MS media. In all the auxin treatments the HRs production was higher than that of the control. It was noted that at higher NAA and IBA concentrations HR production was increased than that at the lower concentrations. In addition, different growth mediums significantly influenced the GSLs accumulation in mustard HR. The results revealed that ½ B5 media showed the highest total GSLs content followed by B5 and ½ SH. Treatment of mustard HRs with auxins such as IAA and IBA negatively influenced the accumulation of GSLs except for 4-methoxyglucobrassicin. We, therefore, suggest that HRs are a viable option for improving the GSLs content from the HR culture of mustard and that SH and ½ B5 medium provides an alternative approach for mass production of HRs and GSLs in mustard, respectively.

Downloads

Download data is not yet available.

References

Antonious, G. F., Bomford, M., & Vincelli, P. (2009). Screening Brassica species for glucosinolate content. Journal of Environmental Science and Health Part B, 44(3), 311-316. https://doi.org/10.1080/03601230902728476

Bálványos, I., Kursinszki, L., & Szoke, E. (2001). The effect of plant growth regulators on biomass formation and lobeline production of Lobelia inflata L. hairy root cultures. Plant Growth Regulation, 34, 339-345. https://doi.org/10.1023/A:1013374524757

Bennett, R. N., Rosa, E. A., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. https://doi.org/10.1021/jf052756t

Brown, A. F., Yousef, G. G., Jeffery, E. H., Klein, B. P., Wallig, M. A., Kushad, M. M., & Juvik, J. A. (2002). Glucosinolate profiles in broccoli: Variation in levels and implications in breeding for cancer chemoprotection. Journal of the American Society for Horticultural Science, 127(5), 807-813. https://doi.org/10.21273/JASHS.127.5.807

Cheruvathur, M. K., & Thomas, T. D. (2014). Effect of plant growth regulators and elicitors on rhinacanthin accumulation in hairy root cultures of Rhinacanthus nasutus (L.) Kurz. Plant Cell, Tissue and Organ Culture, 118, 169-177. https://doi.org/10.1007/s11240-014-0473-9

Cuong, D. M., Kim, J. K., Bong, S. J., Baek, S. A., Jeon, J., Park, J. S., & Park, S. U. (2018). Comparative analysis of glucosinolates and metabolite profiling of green and red mustard (Brassica juncea) hairy roots. 3 Biotech, 8, 382. https://doi.org/10.1007/s13205-018-1393-x

Devi, J., Kumar, R., Singh, K., Gehlot, A., Bhushan, S., & Kumar, S. (2021). In vitro adventitious roots: a non-disruptive technology for the production of phytoconstituents on the industrial scale. Critical Reviews in Biotechnology, 41(4), 564-579. https://doi.org/10.1080/07388551.2020.1869690

Dhakulkar, S., Ganapathi, T., Bhargava, S., & Bapat, V. (2005). Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Science, 169(5), 812-818. https://doi.org/10.1016/j.plantsci.2005.05.014

Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151-158. https://doi.org/10.1016/0014-4827(68)90403-5

Gantait, S., & Mukherjee, E. (2021). Hairy root culture technology: applications, constraints and prospect. Applied Microbiology and Biotechnology, 105, 35-53. https://doi.org/10.1007/s00253-020-11017-9

George, E. F., Hall, M. A., & Klerk, G.-J. D. (2008). The components of plant tissue culture media I: macro-and micro-nutrients, In E. F. George, M. A. Hall & G.-J. D. Klerk (Eds.), Plant Propagation by Tissue Culture (pp. 65-113) Dordrecht: Springer. https://doi.org/10.1007/978-1- 4020-5005-3_3

Guo, D.-P., Guo, Y.-P., Zhao, J.-P., Liu, H., Peng, Y., Wang, Q.-M., Chen, J.-S., & Rao, G.-Z. (2005). Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Science, 168(1), 57-63. https://doi.org/10.1016/j.plantsci.2004.07.019

Gutierrez-Valdes, N., Häkkinen, S. T., Lemasson, C., Guillet, M., Oksman- Caldentey, K.-M., Ritala, A., & Cardon, F. (2020). Hairy root cultures—a versatile tool with multiple applications. Frontiers in Plant Science, 11, 33. https://doi.org/10.3389/fpls.2020.00033

Halkier, B. A., & Du, L. (1997). The biosynthesis of glucosinolates. Trends in Plant Science, 2(11), 425-431. https://doi.org/10.1016/S1360-1385(97)90026-1

Hussain, M. J., Abbas, Y., Nazli, N., Fatima, S., Drouet, S., Hano, C., & Abbasi, B. H. (2022). Root cultures, a boon for the production of valuable compounds: A comparative review. Plants, 11(3), 439. https://doi.org/10.3390/plants11030439

Ismail, A., & Cheah, S. F. (2003). Determination of vitamin C, β-carotene and riboflavin contents in five green vegetables organically and conventionally grown. Malaysian Journal of Nutrition, 9(1), 31-39.

Kim, H. H., Kwon, D. Y., Bae, H., Kim, S.-J., Kim, Y. B., Uddin, M. R., & Park, S. U. (2013a). Influence of auxins on glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica). Asian Journal of Chemistry, 25(11), 6099-6101. https://doi.org/10.14233/ajchem.2013.14266

Kim, H. W., Ko, H. C., Baek, H. J., Cho, S. M., Jang, H. H., Lee, Y. M., & Kim, J. B. (2016). Identification and quantification of glucosinolates in Korean leaf mustard germplasm (Brassica juncea var. integrifolia) by liquid chromatography–electrospray ionization/tandem mass spectrometry. European Food Research and Technology, 242, 1479- 1484. https://doi.org/10.1007/s00217-016-2648-6

Kim, S.-J., Park, W. T., Uddin, M. R., Kim, Y. B., Nam, S.-Y., Jho, K. H., & Park, S. U. (2013b). Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica). Natural Product Communications, 8(2), 217-220.

Kim, Y. S., Li, X., Park, W. T., Uddin, M. R., Park, N. I., Kim, Y. B., Lee, M. Y., & Park, S. U. (2012). Influence of media and auxins on growth and falvone production in hairy root cultures of baikal skullcap, Scutellaria baicalensis. Plant Omics, 5(1), 24-27.

Kumar, G. S., Ganapathi, T., Srinivas, L., Revathi, C., & Bapat, V. (2006). Expression of hepatitis B surface antigen in potato hairy roots. Plant Science, 170(5), 918-925. https://doi.org/10.1016/j.plantsci.2005.12.015

Kumar, S., & Andy, A. (2012). Health promoting bioactive phytochemicals from Brassica. International Food Research Journal, 19(1), 141-152.

Lee, S. Y., Bong, S. J., Kim, J. K., & Park, S. U. (2016). Glucosinolate biosynthesis as influenced by growth media and auxin in hairy root cultures of kale (Brassica oleracea var. acephala). Emirates Journal of Food and Agriculture, 28(4), 277-282. https://doi.org/10.9755/ejfa.2016-01-064

Lietzow, J. (2021). Biologically active compounds in mustard seeds: a toxicological perspective. Foods, 10, 2089. https://doi.org/10.3390/foods10092089

Lin, L.-Z., & Harnly, J. M. (2010). Phenolic component profiles of mustard greens, yu choy, and 15 other Brassica vegetables. Journal of Agricultural and Food Chemistry, 58(11), 6850-6857. https://doi.org/10.1021/jf1004786

Lin, L.-Z., Sun, J., Chen, P., & Harnly, J. (2011). UHPLC-PDA-ESI/HRMS/MSn analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Coss variety). Journal of Agricultural and Food Chemistry, 59(22), 12059-12072. https://doi.org/10.1021/jf202556p

Mantell, S., & Smith, H. (1983). Cultural factors that influence secondary metabolite accumulations in plant cell and tissue cultures, Seminar Series-Society for Experimental Biology, 18, 75-108.

Marino, M., Martini, D., Venturi, S., Tucci, M., Porrini, M., Riso, P., & Del Bo, C. (2021). An overview of registered clinical trials on glucosinolates and human health: the current situation. Frontiers in Nutrition, 8, 730906. https://doi.org/10.3389/fnut.2021.730906

Melim, C., Lauro, M. R., Pires, I. M., Oliveira, P. J., & Cabral, C. (2022). The role of glucosinolates from cruciferous vegetables (Brassicaceae) in gastrointestinal cancers: From prevention to therapeutics. Pharmaceutics, 14(1), 190. https://doi.org/10.3390/pharmaceutics14010190

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Murthy, H. N., Lee, E.-J., & Paek, K.-Y. (2014). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture, 118, 1-16. https://doi.org/10.1007/s11240- 014-0467-7

Nagella, P., chung, I. M., & Murthy, H. N. (2011). In vitro production of gymnemic acid from cell suspension cultures of Gymnema sylvestre R. Br. Engineering in Life Sciences, 11(5), 537-540. https://doi.org/10.1002/elsc.201000167

Norm, I. (1992). Rapeseed-determination of glucosinolates content-Part 1: Method using high-performance liquid chromatography. ISO 9167, 1-9.

Park, C. H., Kim, N. S., Yeo, H. J., Bong, S. J., Park, J. S., Park, N. I., & Park, S. U. (2019). Effects of culture medium on growth and glucosinolate accumulation in the hairy root cultures of watercress (Nasturtium officinale). Research Journal of Biotechnology, 14, 61-66.

Park, S. U., Bong, S. J., Uddin, M. R., Kim, S.-J., & Park, J. S. (2015). Influence of auxins and wounding on glucosinolate biosynthesis in hairy root cultures of Chinese cabbage (Brassica rapa ssp. pekinensis). Biosciences Biotechnology Research Asia, 12(2), 1041-1046.

Park, S. U., Kim, N. S., Bong, S. J., & Lee, S. Y. (2021). Response of culture media and auxin on growth and glucosinolate accumulation in the hairy root cultures of Rocket (Eruca sativa). Current Applied Science and Technology, 21(2), 370-382.

Roy, A. (2021). Hairy root culture an alternative for bioactive compound production from medicinal plants. Current Pharmaceutical Biotechnology, 22(1), 136-149. https://doi.org/10.2174/1389201021666201229110625

Saad, A. I. M., & Elshahed, A. M. (2012). Plant Tissue Culture Media. In A. Leva & L. M. R. Rinaldi (Eds.), Recent Advances in Plant in Vitro Culture (pp. 29-40) Winchester: InTech.

Sahai, O., & Shuler, M. (1984). Environmental parameters influencing phenolics production by batch cultures of Nicotiana tabacum. Biotechnology and Bioengineering, 26(2), 111-120. https://doi.org/10.1002/bit.260260202

Sathasivam, R., Kim, M. C., Yeo, H. J., Nguyen, B. V., Sohn, S. I., Park, S. U., & Kim, J. (2021). Accumulation of phenolic compounds and glucosinolates in sprouts of pale green and purple kohlrabi (Brassica oleracea var. gongylodes) under light and dark conditions. Agronomy, 11(10), 1939. https://doi.org/10.3390/agronomy11101939

Sauerwein, M., Yamazaki, T., & Shimomura, K. (1991). Hernandulcin in hairy root cultures of Lippia dulcis. Plant Cell Reports, 9(10), 579-581. https://doi.org/10.1007/bf00232336

Schenk, R. U., & Hildebrandt, A. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50(1), 199-204. https://doi.org/10.1139/b72-026

Sivakumar, G., Yu, K., Hahn, E., & Paek, K. (2005). Optimization of organic nutrients for ginseng hairy roots production in large-scale bioreactors. Current Science, 89(25), 641-649.

Uddin, M., Park, K. W., Kim, Y. K., Park, S. U., & Pyon, J. Y. (2010). Enhancing sorgoleone levels in grain sorghum root exudates. Journal of Chemical Ecology, 36(8), 914-922. https://doi.org/10.1007/s10886-010-9829-8

Uddin, M. R., Park, W. T., Kim, Y. K., Pyon, J. Y., & Park, S.-U. (2011). Effects of auxins on sorgoleone accumulation and genes for sorgoleone biosynthesis in sorghum roots. Journal of Agricultural and Food Chemistry, 59(24), 12948-12953. https://doi.org/10.1021/jf2024402

Vallejo, F., Tomás-Barberán, F. A., Benavente-García, A. G., & García- Viguera, C. (2003). Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. Journal of the Science of Food and Agriculture, 83(4), 307-313. https://doi.org/10.1002/jsfa.1320

Washida, D., Shimomura, K., Nakajima, Y., Takido, M., & Kitanaka, S. (1998). Ginsenosides in hairy roots of a Panax hybrid. Phytochemistry, 49(8), 2331-2335. https://doi.org/10.1016/S0031-9422(98)00308-2

Washida, D., Shimomura, K., Takido, M., & Kitanaka, S. (2004). Auxins affected ginsenoside production and growth of hairy roots in Panax hybrid. Biological and Pharmaceutical Bulletin, 27(5), 657-660. https://doi.org/10.1248/bpb.27.657

Woodward, A. W., & Bartel, B. (2005). Auxin: regulation, action, and interaction. Annals of Botany, 95(5), 707-735. https://doi.org/10.1093/aob/mci083

Published

19-12-2022

How to Cite

Bong, S. J. ., Park, J., & Kwon, D. Y. . (2022). Effect of culture media and auxin on growth and glucosinolate accumulation in the hairy root cultures of mustard (Brassica juncea). Journal of Phytology, 14, 142–148. https://doi.org/10.25081/jp.2022.v14.8138

Issue

Section

Articles