Assessment of vitality Berberis thunbergii DC. in Kyiv: Photosynthesis and Phytopathology

Authors

  • Oleksandra Strashok National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony St., 03041, Kyiv, Ukraine, Wroclaw University of Environmental and Life Sciences, 25 Norwida St. 50-375 Wrocław, Poland
  • Monika Ziemiańska Wroclaw University of Environmental and Life Sciences, 25 Norwida St. 50-375 Wrocław, Poland
  • Olena Kolesnichenko National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony St., 03041, Kyiv, Ukraine
  • Anna Salnikova National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony St., 03041, Kyiv, Ukraine
  • Kytaev Oleg Institute of Horticulture of NAAS of Ukraine, Sadova St. 23, 03027, Kyiv, Ukraine

DOI:

https://doi.org/10.25081/jp.2022.v14.7409

Keywords:

Induction of chlorophyll fluorescence, Powdery mildew, Chlorophyll a and b

Abstract

The process of functioning of the photosynthetic apparatus is one of the most vulnerable to stress factors. The information about the functional state of plants and the prospects for their use in urban greening can provide methods of fluorescence analysis. The objective of this research was to develop the state of plants Berberis thunbergii DC. which grow in the Mariinskyi Park (Kyiv) by the content of photosynthetic pigments and fluorescence induction chlorophyll (FIC). The article presents the results of the evaluation of fluorescence induction (FI) indicators and the content of photosynthetic pigments B. thunbergii according to the degree of damage by powdery mildew. Experimental plants were planted in the chernozem layer of 50 cm (humus content 4 %). The plants grow in a group planting of Picea glauca ‘Conica’ and Chlorophytum comosum ‘Variegatum’ directly 1.5–5 m from the highway under the canopy of Tilia cordata Mill. Moreover, the variability of FI curves in the absence/presence of plant lesions. The authors investigated the relationship between the content of photosynthetic pigments and FI. The degree of damage to experimental plants by powdery mildew affects the total chlorophyll content (a+b) and decreases by approximately 16 %, 7 %, and 5 % compared to the control. Recorded gradually disappear FI curves in plants with the highest degree of damage which affect photochemical reactions due to the slowing down of the outflow of Calvin cycle enzymes.

Downloads

Download data is not yet available.

References

Bruns Pflanzen. (2000). Ukhod za dekoratyvnymy rastenyiamy. Moskwa: Globus. (in Russian)

CABI. (2018). Distribution map. Retrieved from https://www.cabi.org/isc/datasheet/8808

CABI. (2021). Invasive Species Compendium. Retrieved from https://www.cabi.org/isc/datasheet/8808

Central Geophysical Observatory named after Boris Sreznevsky. Retrieved from http://cgo-sreznevskyi.kyiv.ua/index.php?fn=k_klimat&f=kyiv

Cho, S. E., Lee, S. H., Seo, S. T., Lee, C. K., & Shin, H. D. (2018). First Report of Powdery Mildew Caused by Erysiphe berberidicola on Berberis thunbergii in Korea. Plant Disease, 102(9), 1855. https://doi.org/10.1094/PDIS-02-18-0302-PDN

Close, D. C., & Beadle, C. L. (2005). Xanthophyll-cycle dynamics and rapid induction of anthocyanin synthesis in Eucalyptus nitens seedlings transferred tophotoinhibitiony conditions. Journal of Plant Physiology, 162(1), 37-46. https://doi.org/10.1016/j.jplph.2003.10.001

Geshele, E. E. (1971). Metodycheskoe rukovodstvo po fytopatolohycheskoi otsenke zernovykh kultur. Odessa: VSGI. (in Russian)

Gossler, E., Gossler, M., & Gossler, R. (2009). The Gossler Guide to the Best Hardy Shrubs: More than 350 Expert Choices for Your Garden. Portland: Timber Press.

Hatch, L. C. (2015). Cultivars of Woody Plants: Baccharis to Buxus. US: TCR Press.

Hrodzynskyi, A. M., & Hrodzynskyi, D. M. (1973). Kratkyi spravochnyk po fyzyolohyy rastenyi. Kiev: Naukova dumka. (in Russian)

Ingram, D. S. (1981). Physiology and biochemistry of hostparasite interaction. In D. M. Spencer (Eds.), The Downy Mildews. London: Academic Press.

Kautzky, H., & Hirsch, A. (1934). Das Fluoreszenzverhalten gruner Pflanzen. Biochem Z, 274, 422-434.

Korsunskiy, V. M., & Snegur, A. A. (1997). Instrukcia k priboru “Floratest FT-1”. Kiev. (in Russian)

Kyryk, M. M., Taranukh, Yu. M., Taranukho, M. P., & Kytaev, O. I. (2011). Diahnostyka virusnoi infektsii smorodyny chornoi ta malyny metodom induktsii fluorestsentsii khlorofilu lystkiv. Visnyk ahrarnoi nauky: zb. nauk. Prats, 10, 26-28. (in Ukrainian)

Kytaev, O., Klochan, P., & Romanov, V. (2005). Portatyvnyi khronofluorometr dlia ekspres-diahnostyky fotosyntezu «Floratest». Zb. dop. konf. – zvitu z kompleksnoi prohramy fundamentalnykh doslidzhen NAN Ukrainy u haluzi sensornykh system ta tekhnolohii (p. 59). (in Ukrainian)

Leshchenko, O., Lihanov, A., & Dradrach, A. (2014). Variability of the photosynthetic system of plant leaves Lolium perenne L. as an example on varieties of Ukrainian breeding. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocawiu: Rolnictwo, 605, 45-54.

Li, P.-M., Cheng, L., Peng, T., Gao, H.-Y. (2009). CO2 assimilation and chlorophyll fluorescence in green versus red Berberis thunbergii leaves measured with different quality irradiation. Photosynthetica, 47(1), 11-18. https://doi.org/10.1007/s11099-009-0004-9

Lindenthal, M., Steiner, U., Dehne, H. W., & Oerke, E. C. (2005). Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology, 95(3), 233-40. https://doi.org/10.1094/PHYTO-95-0233

Mandal, K., Saravanan, R., Maiti, S., & Kothari, I. L. (2009). Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk. Journal of Plant Diseases and Protection, 116, 164-168. https://doi.org/10.1007/BF03356305

Marçais, B., & Desprez-Loustau, M. L. (2014). European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Annals of Forest Science, 71, 633-642. https://doi.org/10.1007/s13595-012-0252-x

Michal, O-S. (2009). Does anthocyanin degradation play a significant role in determining pigment concentration in plants. Plant Science, 177(4), 310-360. https://doi.org/10.1016/j.plantsci.2009.06.015

Moriondo, M., Orlandini, S., Giuntoli, A., & Bindi, M. (2005). The effect of downy and powdery mildew on grapevine (Vitis vinifera L.) leaf gas exchange. Journal of Phytopathology, 153(6), 350-357. https://doi.org/10.1111/j.1439-0434.2005.00984.x

Richardson, A. D., Duigan, S. P., & Berlyn, G. P. (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153(1), 185-194. https://doi.org/10.1046/j.0028- 646X.2001.00289.x

Rubyn, B. A. (1971). Kurs fyzyolohyy rastenyi: [uchebn. dlia stud. byol. spetsyalnostei. Moskwa: Vysshaia shkola. (in Russian)

Schreiber, U., Bilger, W., Hormann, H., & Neubauer, C. (1998). Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In A. S. Raghavendra (Eds.), Photosynthesis: a comprehensive treatise (Vol. 24, pp. 320-336) Cambridge: Cambridge University Press.

Shlyk, A. A. (1971). Opredelenie khlorofyllov i karotinoidov v ekstraktakh zelenykh lystev. In Byokhymycheskye metody v fiziolohii rastenyi (pp. 154-170). Moskwa: Nauka. (in Russian)

Sushynska, N. I., & Korshykov, I. I. (2019). The content of photosynthetic pigments in leaves of Berberis thunbergii forms in the Kherson region. Chornomors’k. bot. z., 15(4), 362–370. https://doi.org/10.32999/ksu1990-553X/2019-15-4-5 (in Ukrainian)

Veselovskiy, V. A., & Veselova, T. V. (1990). Luminiscenciya rasteniy. Teoreticheskie i prakticheskie aspekty. Kiev: Nauka (in Russian)

Wrolstad, R. E., Acree, T. E., An, H., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., Shoemaker, C. F., & Sporns, P. (2001). Preface. Current Protocols in Food Analytical Chemistry, iii-vi. https://doi.org/10.1002/0471142913.faprefs00

Yakobchuk, O. M., & Kolesnichenko, O. V. (2013). Vykorystannia roslyn vydiv ta kultyvariv rodu Berberis L. pry stvorenni monosadu. Naukovi dopovidi NUBiP Ukrainy, 1(37). http://nd.nubip.edu.ua/2013_1/13yom.pdf (in Ukrainian)

Yuzbekov, A. K. (1990). Spektrofotometricheskie sposoby opredeleniia aktivnosty kliuchevykh fermentov fotosinteticheskoho metabolyzma v S3- i S4 – rastenij. (in Russian)

Zhang, H., Zhong, H., Wang, J., Sui, X. & Xu, N. (2016). Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”. PeerJ, 4, e2125. https://doi.org/10.7717/peerj.2125

Published

16-12-2022

How to Cite

Strashok, O., Ziemiańska, M. ., Kolesnichenko, O., Salnikova, A., & Oleg, K. (2022). Assessment of vitality Berberis thunbergii DC. in Kyiv: Photosynthesis and Phytopathology. Journal of Phytology, 14, 136–141. https://doi.org/10.25081/jp.2022.v14.7409

Issue

Section

Articles