Biochemical changes of rice genotypes against blast (Magnaporthe oryzae) disease and SSR marker validation for resistance genes

Authors

  • Israt Yasmin Plant Molecular Genetics Laboratory, Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
  • Sourav Adhikary Plant Molecular Genetics Laboratory, Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
  • Lutful Hassan Plant Molecular Genetics Laboratory, Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
  • G.H.M. Sagor Plant Molecular Genetics Laboratory, Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh

DOI:

https://doi.org/10.25081/jp.2023.v15.7397

Keywords:

Rice, Blast, Resistance genes, Antioxidant system

Abstract

Rice blast caused by Magnoporthe oryzae is a major devastating fungal disease and represents a potential threat to world rice productions. However, information about the genetic and biochemical basis of disease tolerance is still limited. In this study, we tested the presence and diversity of resistant R genes using SSR markers, and the antioxidant enzymes catalase (CAT), ascorbate peroxidise (APX) and guaicol peroxidise (POD), activity and also the concentration of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in resistant (BAUdhan 3) and susceptible (BRRIdhan 28) genotype. Molecular marker analysis reveals the presence of all ten studied resistant genes in BAUdhan 3. Among the markers studied, three markers namely RM224, RM72 and RM206 produce distinct band only in resistant genotype BAUdhan 3, which might be used to screen resistant genotypes. The enzymatic activity of APX, CAT and POD increased in the inoculated plant for both cultivars but the increase was more prominent for BAUdhan 3. The M. oryzae infections significantly increased the H2O2 content in BRRIdhan 28 and not much changed in BAUdhan 3. The MDA concentration was higher in the leaves of inoculated plants of BRRIdhan 28. The higher activities of APX and POD in the leaves of the inoculated plants of BAUdhan 3 resulted in lower H2O2 accumulation which can minimize the cellular damages possibly caused by reactive oxygen species. The result shows that the presence of more resistance genes and an effective antioxidative system in BAUdhan 3, which limits the damage caused due to fungal infection and thus contributes to greater resistance.

Downloads

Download data is not yet available.

References

Aebi, H. (1984). Catalase in vitro. In L. Packer (Eds.), Methods in Enzymology (Vol. 105, pp. 121-126) Massachusetts, US: Academic Press. https://doi.org/10.1016/S0076-6879(84)05016-3

Agrawal, G. K., Jwa, N.-S., & Rakwal, R. (2002a). A pathogen-induced novel rice (Oryza sativa L.) gene encodes a putative protein homologous to type II glutathione-S-transferases. Plant Science, 163(6), 1153-1160. https://doi.org/10.1016/S0168-9452(02)00331-X

Agrawal, G. K., Rakwal, R., Jwa, N.-S., & Agrawal, V. P. (2002b). Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene, 283(1-2), 227-236. https://doi.org/10.1016/S0378-1119(01)00854-X

Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Ballini, E., Morel, J.-B., Droc, G., Price, A., Courtois, B., Notteghem, J.-L., & Tharreau, D. (2008). A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Molecular Plant-Microbe Interactions, 21(7), 859-868. https://doi.org/10.1094/MPMI-21-7-0859

Berruyer, R., Adreit, H., Milazzo, J., Gaillard, S., Berger, A., & Dioh, W., Lebrun, M.-H., & Tharreau, D. (2003). Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theoretical and Applied Genetics, 107, 1139-1147. https://doi.org/10.1007/s00122-003-1349-2

Chen, M., Presting, G., Barbazuk, W. B., Goicoechea, J. L., Blackmon, B., Fang, G., Kim, H., Frisch, D., Yu, Y., Sun, S., Higingbottom, S., Phimphilai, J., Phimphilai, D., Thurmond, S., Gaudette, B., Li, P., Liu, J., Hatfield, J., Main, D.,…Wing, R. A. (2002). An integrated physical and genetic map of the rice genome. The Plant Cell, 14(3), 537-545. https://doi.org/10.1105/tpc.010485

Deng, Y., Zhu, X., Shen, Y., & He, Z. (2006). Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theoretical and Applied Genetics, 113, 705-713. https://doi.org/10.1007/s00122-006-0338-7

Díaz-Vivancos, P., Clemente-Moreno, M. J., Rubio, M., Olmos, E., García, J. A., Martínez-Gómez, P., & Hernandéz, J. A. (2008). Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. Journal of Experimental Botany, 59(8), 2147-2160. https://doi.org/10.1093/jxb/ern082

Dixon, D. P., Skipsey, M., & Edwards, R. (2010). Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 71(4), 338-350. https://doi.org/10.1016/j.phytochem.2009.12.012

Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19(1), 11-15.

Filha, M. S. X., Rodrigues, F. A., Domiciano, G. P., Oliveira, H. V., Silveira, P. R., & Moreira, W. R. (2011). Wheat resistance to leaf blast mediated by silicon. Australasian Plant Pathology, 40, 28-38. https://doi.org/10.1007/s13313-010-0010-1

Han, S. S., Ryu, J. D., Shim, H. S., Lee, S. W., Hong, Y. K., & Cha, K. H. (2001). Breakdown of resistant cultivars by new race KI-1117a and race distribution of rice blast fungus during 1999-2000 in Korea. Research in Plant Disease, 7(2), 86-92.

Harrach, B. D., Fodor, J., Pogány, M., Preuss, J., & Barna, B. (2008). Antioxidant, ethylene and membrane leakage responses to powdery mildew infection of near-isogenic barley lines with various types of resistance. European Journal of Plant Pathology, 121, 21-33. https://doi.org/10.1007/s10658-007-9236-3

Heath, R. L., & Packer, L. (1968). Photo-peroxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1

Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). A large family of class III plant peroxidases. Plant Cell Physiology, 42, 462-468. https://doi.org/10.1093/pcp/pce061

Hong-xia, L., Zhi-yong, X., & Zeng-yan, Z. (2011). Changes in activities of antioxidant-related enzymes in leaves of resistant and susceptible wheat inoculated with Rhizoctonia cerealis. Agricultural Sciences China, 10(4), 526-533. https://doi.org/10.1016/S1671-2927(11)60033-3

Hückelhoven, R., Dechert, C., Trujillo, M., & Kogel, K.-H. (2001). Differential expression of putative cell death regulator genes in nearisogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. Plant Molecular Biology, 47, 739-748. https://doi.org/10.1023/A:1013635427949

Imam, J., Alam, S., Mandal, N. P., Variar, M., & Shukla, P. (2014). Molecular screening for identification of blast resistance genes in north east and eastern indian rice germplasm (Oryza sativa L.) with PCR based markers. Euphytica, 196, 199-211. https://doi.org/10.1007/s10681-013-1024-x

Jia, Y., Bryan, G. T., Farrall, L., & Valent, B. (2003). Natural variation at the Pi-ta rice blast resistance locus. Phytopathology, 93(11), 1452-1459. https://doi.org/10.1094/PHYTO.2003.93.11.1452

Kim, J. S., Ahn, S. N., Kim, C. H., & Shim, C. K. (2010). Screening of rice blast resistance genes from aromatic rice germplasms with SNP markers. The Plant Pathology Journal, 26(1), 70-79. https://doi.org/10.5423/PPJ.2010.26.1.070

Kumar, A., Kumar, S., Kumar, R., Kumar, V., Prasad, L., Kumar, N., & Singh, D. (2010). Identification of blast resistance expression in rice genotypes using molecular markers (RAPD & SCAR). African Journal of Biotechnology, 9(24), 3501-3509.

Kuzniak, E., & Skłodowska, M. (2005). Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta, 222, 192-200. https://doi.org/10.1007/s00425-005-1514-8

Kwon, J. O., & Lee, S. G. (2002). Real-time micro-weather factors of growing field to the epidemics of rice blast. Research in Plant Disease, 8(4), 199-206.

Lee, F. N. (1994). Rice breeding programs, blast epidemics and blast management in the United States. In R. S. Zeigler, S. Leong & P. S. Teng (Eds.), Rice Blast Disease (pp. 489-500) Wallingford, UK: CAB International Rice Research Institute.

Li, Y. B., Wu, C. J., Jiang, G. H., Wang, L. Q., & He, Y. Q. (2007). Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects. Plant Breeding, 126(5), 541-547. https://doi.org/10.1111/j.1439-0523.2007.01409.x

Liang, Y., Chen, Q. I. N., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgareL.). Journal of Plant Physiology, 160(10), 1157-1164. https://doi.org/10.1078/0176-1617-01065

Lima, A. L. S., DaMatta, F. M., Pinheiro, H. A., Totola, M. R., & Loureiro, M. E. (2002). Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environmental and Experimental Botany, 47(3), 239-247. https://doi.org/10.1016/S0098-8472(01)00130-7

Liu, W., Liu, J., Triplett, L., Leach, J. E., & Wang, G.-L. (2014). Novel insights into rice innate immunity against bacterial and fungal pathogens. Annual Review of Phytopathology, 52, 213-241. https://doi.org/10.1146/annurev-phyto-102313-045926

Liu, Y., Liu, B., Zhu, X., Yang, J., Bordeos, A., Wang, G., Leach, J. E., & Leung, H. (2013). Fine-mapping and molecular marker development for Pi56 (t), an NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theoretical and Applied Genetics, 126(4), 985-998. https://doi.org/10.1007/s00122-012-2031-3

Magbanua, Z. V., De Moraes, C. M., Brooks, T. D., Williams, W. P., & Luthe, D. S. (2007). Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Molecular Plant-Microbe Interactions, 20(6), 697-706. https://doi.org/10.1094/MPMI-20-6-0697

Mandal, S., Mitra, A., & Mallick, N. (2008). Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiology and Molecular Plant Pathology, 72(1-3), 56-61. https://doi.org/10.1016/j.pmpp.2008.04.002

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

Ou, S. H. (1979). Breeding rice for resistance to blast-a critical review. Proceeding of the rice blast workshop (pp. 81-137). Wallingford, UK: CAB International Rice Research Institute.

Panda, S. K. (2007). Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology, 164(11), 1419-1428. https://doi.org/10.1016/j.jplph.2007.01.012

Quan, L.-J., Zhang, B., Shi, W.-W., & Li, H.-Y. (2008). Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrated Plant Biology, 50(1), 2-18. https://doi.org/10.1111/j.1744-7909.2007.00599.x

Rauyaree, P., Choi, W., Fang, E., Blackmon, B., & Dean, R. A. (2001). Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Molecular Plant Pathology, 2(6), 347-354. https://doi.org/10.1046/j.1464-6722.2001.00085.x

Singh, A. K., Singh, P. K., Arya, M., Singh, N. K., & Singh, U. S. (2015). Molecular screening of blast resistance genes in rice using SSR markers. The Plant Pathology Journal, 31(1), 12-24. https://doi.org/10.5423/PPJ.OA.06.2014.0054

Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., & Jones, J. D. G. (1995). Molecular genetics of plant disease resistance. Science, 268(5211), 661-667. https://doi.org/10.1126/science.7732374

Valent, B., & Chumley, F. G. (1991). Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annual Review of Phytopathology, 29, 443-467. https://doi.org/10.1146/annurev.py.29.090191.002303

Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1

Wang, X., Fjellstrom, R., Jia, Y., Yan, W. G., Jia, M. H., Scheffer, B. E., Wu, D., Shu, Q., & McClung, A. M. (2010). Characterization of Pi-ta blast resistance gene in an international rice core collection. Plant Breeding, 129(5), 491-501. https://doi.org/10.1111/j.1439-0523.2009.01706.x

Wang, Z., Jia, Y., Rutger, J. N., & Xia, Y. (2007). Rapid survey for presence of a blast resistance gene Pi‐ta in rice cultivars using the dominant DNA markers derived from portions of the Pi‐ta gene. Plant Breeding, 126(1), 36-42. https://doi.org/10.1111/j.1439-0523.2007.01304.x

Xia, J. Q., Correll, J. C., Lee, F. N., Marchetti, M. A., & Rhoads, D. D. (1993). DNA fingerprinting to examine micro geographic variation in the Magnaporhe grisea (Pyricularia grisea) population in two rice fields in Arkansas. Phytopathology, 83(10), 1029-1035.

Published

23-05-2023

How to Cite

Yasmin, I., Adhikary, S., Hassan, L., & Sagor, G. (2023). Biochemical changes of rice genotypes against blast (Magnaporthe oryzae) disease and SSR marker validation for resistance genes. Journal of Phytology, 15, 63–69. https://doi.org/10.25081/jp.2023.v15.7397

Issue

Section

Articles