Mechanisms used by plant growth-promoting rhizobacteria to boost plant growth - A Review
DOI:
https://doi.org/10.25081/jp.2023.v15.7213Keywords:
Biofertiliser, Biostimulant, Plant growth-promoting rhizobacteria, RhizosphereAbstract
Several decades after the green revolution, the agricultural industry depended on artificial chemical fertilisers to achieve higher crop yields. This practice, however, contributes to a hazardous impact on the farming ecosystem, causing a smaller deposit of arable land for crop cultivation and production worldwide. Since the 2000s, people, industries, and governments are aware that it is time for everyone to shift to new technology which promotes responsible land use for agriculture. One of the technologies is plant growth-promoting rhizobacteria to enhance crop productivity and potentially rehabilitate soil health directly or indirectly. This review paper outlines the mechanisms used by plant growth-promoting rhizobacteria to promote plant growth. The tools could be opening up new ideas to address one of the recent and urgent world agriculture issues, food security.
Downloads
References
Abdallah, R. A. B., Mokni-Tlili, S., Nefzi, A., Jabnoun-Khiareddine, H., & Daami-Remadi, M. (2016). Biocontrol of Fusarium wilt and growth promotion of tomato plantusing endophytic bacteria isolated from Nicotiana glauca organs. Biological Control, 97, 80-88. https://doi.org/10.1016/j.biocontrol.2016.03.005
Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10(6), 520. https://doi.org/10.3390/biology10060520
Ahmad, F., Ahmad, I., & Khan, M. S. (2005). Indole acetic acid production by the indigenous strain of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology, 29, 29-34.
Aksoy, H. M., Kaya, Y., Ozturk, M., Secgin, Z., Onder, H., & Okumus, A. (2017). Pseudomonas putida–Induced response in phenolic profile of tomato seedlings (Solanum lycopersicum L.) infected by Clavibacter michiganensis subsp. michiganensis. Biological Control, 105, 6-12. https://doi.org/10.1016/j.biocontrol.2016.11.001
Aziz, Z. F. A., Saud, H. M., Rahim, K. A., & Ahmed, O. H. (2012). Variable responses on early development of shallot (Allium ascalonicum) and mustard (Brassica juncea) plants to Bacillus cereus inoculation. Malaysian Journal of Microbiology, 8(1), 47-50. https://doi.org/10.21161/mjm.33711
Babu, A. N., Jogaiah, S., Ito, S.-I., Nagaraj, A. K., & Tran, L.-S. P. (2015). Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Science, 231, 62-73. https://doi.org/10.1016/j.plantsci.2014.11.006
Baca, B. E., & Elmerich, C. (2007). Microbial production of plant hormones. In C. Elmerich & W. E. Newton (Eds.), Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations (Vol. 5, pp. 113-143) Dordrecht, Netherlands: Springer. https://doi.org/10.1007/1-4020-3546-2_6
Bahadou, S. A., Ouijja, A., Karfach, A., Tahiri, A., & Lahlali, R. (2018). New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microbial Pathogenesis, 117, 7-15. https://doi.org/10.1016/j.micpath.2018.02.011
Bhattacharjee, R. B., Singh, A., & Mukhopadhyay, S. N. (2008). Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Applied Microbiology and Biotechnology, 80, 199-209. https://doi.org/10.1007/s00253-008-1567-2
Bishnoi, U. (2015). PGPR interaction: an ecofriendly approach promoting the sustainable agriculture system. In H. Bais & J. Sherrier (Eds.), Advances in Botanical Research (Vol. 75, pp. 81-113) Massachusetts, US: Academic Press. https://doi.org/10.1016/bs.abr.2015.09.006
Borah, B., Ahmed, R., Hussain, M., Phukon, P., Wann, S. B., Sarmah, D. K., & Bhau, B. S. (2018). Suppression of root-knot disease in Pogostemon cablin caused by Meloidogyne incognita in a rhizobacteria mediated activation of phenylpropanoid pathway. Biological Control, 119, 43-50. https://doi.org/10.1016/j.biocontrol.2018.01.003
Budi, S. W., van Tuinen, D., Arnould, C., Dumas-Gaudot, E., Gianinazzi-Pearson, V., & Gianinazzi, S. (2000). Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Applied Soil Ecology, 15(2), 191-199. https://doi.org/10.1016/S0929-1393(00)00095-0
Chu, B. C., Garcia-Herrero, A., Johanson, T. H., Krewulak, K. D., Lau, C. K., Peacock, R. S., Slavinskaya, Z., & Vogel, H. J. (2010). Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals, 23, 601-611. https://doi.org/10.1007/s10534-010-9361-x
Colagiero, M., Rosso, L. C., & Ciancio, A. (2018). Diversity and biocontrol potential of bacterial consortia associated to root-knot nematodes. Biological Control, 120, 11-16. https://doi.org/10.1016/j.biocontrol.2017.07.010
Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2), 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
da Silveira, A. P. D., Sala, V. M. R., Cardoso, E. J. B. N., Labanca, E. G., & Cipriano, M. A. P. (2016). Nitrogen metabolism and growth of wheat plant under diazotrophic endophytic bacteria inoculation. Applied Soil Ecology, 107, 313-319. https://doi.org/10.1016/j.apsoil.2016.07.005
de Vleesschauwer, D., & Höfte, M. (2009). Rhizobacteria-induced systemic resistance. In L. C. V. Loon (Eds.), Advances in Botanical Research (Vol. 51, pp. 223-281) Massachusetts, US: Academic Press. https://doi.org/10.1016/S0065-2296(09)51006-3
Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek, 106, 85-125. https://doi.org/10.1007/s10482-013-0095-y
Duffy, B. K., & Défago, G. (1999). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strain. Applied and Environmental Microbiology, 65(6), 2429-2438. https://doi.org/10.1128/AEM.65.6.2429-2438.1999
Etesami, H., Hosseini, H. M., Alikhani, H. A., & Mohammadi, L. (2014). Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. Journal of Plant Growth Regulation, 33, 654-670. https://doi.org/10.1007/s00344-014-9415-3
Etesami, H., Jeong, B. R., & Glick, B. R. (2021). Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Frontiers in Plant Science, 12, 699618. https://doi.org/10.3389/fpls.2021.699618
Felse, P. A., & Panda, T. (2000). Production of microbial chitinases-A revisit. Bioprocess Engineering, 23, 127-134. https://doi.org/10.1007/PL00009117
Fernando, W. G. D., Nakkeeran, S., & Zhang, Y. (2005). Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In Z. A. Siddiqui (Eds.), PGPR: Biocontrol and Biofertilization (pp. 67-109) Dordrecht, Netherlands: Springer. https://doi.org/10.1007/1-4020-4152-7_3
Franche, C., Lindström, K., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321, 35-59. https://doi.org/10.1007/s11104-008-9833-8
Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27-39. https://doi.org/10.1016/j.biocontrol.2016.11.007
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
Gowtham, H. G., Hariprasad, P., Nayak, S. C., & Niranjana, S. R. (2016). Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato. Rhizosphere, 2, 72-74. https://doi.org/10.1016/j.rhisph.2016.07.008
Holthusen, D., Peth, S., & Horn, R. (2010). Impact of potassium concentration and matric potential on soil stability derived from rheological parameters. Soil and Tillage Research, 111(1), 75-85. https://doi.org/10.1016/j.still.2010.08.002
Hong, C. E., Kwon, S. Y., & Park, J. M. (2016). Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiological Research, 185, 13-21. https://doi.org/10.1016/j.micres.2016.01.004
Iavicoli, A., Boutet, E., Buchala, A., & Métraux, J.-P. (2003). Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant-Microbe Interactions, 16(10), 851-858. https://doi.org/10.1094/MPMI.2003.16.10.851
Janga, M. R., Raoof, M. A., & Ulaganathan, K. (2017). Effective biocontrol of Fusarium wilt in castor (Ricinius communis L.) with Bacillus sp. in pot experiments. Rhizosphere, 3, 50-52. https://doi.org/10.1016/j.rhisph.2017.01.001
Jiang, Y., Wu, Y., Xu, W., Cheng, Y., Chen, J., Xu, L., Hu, F., & Li, H. (2012). IAA-producing bacteria and bacterial-feeding nematodes promote Arabidopsis thaliana root growth in natural soil. European Journal of Soil Biology, 52, 20-26. https://doi.org/10.1016/j.ejsobi.2012.05.003
Joshi, F., Archana, G., & Desai, A. (2006). Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Current Microbiology, 53, 141-147. https://doi.org/10.1007/s00284-005-0400-8
Kaushal, M., & Wani, S. P. (2016). Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems & Environment, 231, 68-78. https://doi.org/10.1016/j.agee.2016.06.031
Kennedy, I. R., Choudhury, A. T. M. A., & Kecskés, M. L. (2004). Nonsymbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry, 36(8), 1229-1244. https://doi.org/10.1016/j.soilbio.2004.04.006
Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, 885-886. https://doi.org/10.1038/286885a0
Kobayashi, D. Y., Reedy, R. M., Bick, J., & Oudemans, P. V. (2002). Characterisation of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Applied and Environmental Microbiology, 68(3), 1047-1054. https://doi.org/10.1128/AEM.68.3.1047-1054.2002
Krey, T., Vassilev, N., Baum, C., & Eichler-Löbermann, B. (2013). Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maise phosphorus nutrition under field conditions. European Journal of Soil Biology, 55, 124-130. https://doi.org/10.1016/j.ejsobi.2012.12.007
Liu, K., Garrett, C., Fadamiro, H., & Kloepper, J. W. (2016). Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biological Control, 99, 8-13. https://doi.org/10.1016/j.biocontrol.2016.04.007
Loper, J. E., & Gross, H. (2007). Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. European Journal of Plant Pathology, 119, 265-278. https://doi.org/10.1007/s10658-007-9179-8
Loper, J. E., & Henkels, M. D. (1997). Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Applied and Environmental Microbiology, 63(1), 99-105. https://doi.org/10.1128/aem.63.1.99-105.1997
Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
Ma, X., Wang, X., Cheng, J., Nie, X., Yu, X., Zhao, Y., & Wang, W. (2015). Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biological Control, 90, 34-41. https://doi.org/10.1016/j.biocontrol.2015.05.013
Mabood, F., Zhou, X., & Smith, D. L. (2014). Microbial signaling and plant growth promotion. Canadian Journal of Plant Science, 94(6), 1051-1063. https://doi.org/10.4141/cjps2013-148
Mandal, S., & Ray, R. C. (2011). Induced systemic resistance in biocontrol of plant diseases. In A. Singh, N. Parmar & R. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (Vol. 108, pp. 241-260) Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-19769-7_11
Martins, S. A., Schurt, D. A., Seabra, S. S., Martins, S. J., Ramalho, M. A. P., Moreira, F. M. de S., da Silva, J. C. P., da Silva, J. A. G., & de Medeiros, F. H. V. (2018). Common bean (Phaseolus vulgaris L.) growth promotion and biocontrol by rhizobacteria under Rhizoctonia solani suppressive and conducive soils. Applied Soil Ecology, 127, 129-135. https://doi.org/10.1016/j.apsoil.2018.03.007
Matilla, M. A., Daddaoua, A., Chini, A., Morel, B., & Krell, T. (2018). An auxin controls bacterial antibiotics production. Nucleic Acids Research, 46(21), 11229-11238. https://doi.org/10.1093/nar/gky766
Meena, V. S., Maurya, B. R., & Verma, J. P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiological Research, 169(5-6), 337-347. https://doi.org/10.1016/j.micres.2013.09.003
Meena, V. S., Maurya, B. R., Verma, J. P., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilising rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81, 340-347. https://doi.org/10.1016/j.ecoleng.2015.04.065
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634-663. https://doi.org/10.1111/1574-6976.12028
Niu, B., Wang, W., Yuan, Z., Sederoff, R. R., Sederoff, H., Chiang, V. L., & Borriss, R. (2020). Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Frontiers in Microbiology, 11, 585404. https://doi.org/10.3389/fmicb.2020.585404
Nonnoi, F., Chinnaswamy, A., de la Torre, V. S. G., de la Pena, T. C., Lucas, M. M., & Pueyo, J. J. (2012). Metal tolerance of rhizobial strain isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Applied Soil Ecology, 61, 49-59. https://doi.org/10.1016/j.apsoil.2012.06.004
Oberson, A., Friesen, D. K., Rao, I. M., Bühler, S., & Frossard, E. (2001). Phosphorus transformations in an Oxisol under contrasting land-use systems: the role of the soil microbial biomass. Plant and Soil, 237, 197-210. https://doi.org/10.1023/A:1013301716913
Olivares, J., Bedmar, E. J., & Sanjuán, J. (2013). Biological nitrogen fixation in the context of global change. Molecular Plant-Microbe Interactions, 26(5), 486-494. https://doi.org/10.1094/MPMI-12-12-0293-CR
Olorunleke, F. E., Hua, G. K. H., Kieu, N. P., Ma, Z., & Höfte, M., (2015). Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Environmental Microbiology Reports, 7(5), 774-781. https://doi.org/10.1111/1758-2229.12310
Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. -L., & Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9(4), 1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
Opoku-Kwanowaa, Y., Furaha, R. K., Yan, L., & Wei, D. (2020). Effects of planting field on groundwater and surface water pollution in China. CLEAN-Soil Air Water, 48(5-6), 1900452. https://doi.org/10.1002/clen.201900452
Parmar, P., & Sindhu, S. S. (2013). Potassium solubilisation by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology Research, 3(1), 25-31.
Pereira, S. I. A., & Castro, P. M. L. (2014). Phosphate-solubilising rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering, 73, 526-535. https://doi.org/10.1016/j.ecoleng.2014.09.060
Phillips, D. A. (1980). Efficiency of symbiotic nitrogen fixation in legumes. Annual Review of Plant Physiology, 31, 29-49. https://doi.org/10.1146/annurev.pp.31.060180.000333
Prabhukarthikeyan, S. R., Keerthana, U., & Raguchander, T. (2018). Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiological Research, 210, 65-73. https://doi.org/10.1016/j.micres.2018.03.009
Punja, Z. K., Rodriguez, G., & Tirajoh, A. (2016). Effects of Bacillus subtilis strain QST 713 and storage temperatures on post-harvest disease development on greenhouse tomatoes. Crop Protection, 84, 98-104. https://doi.org/10.1016/j.cropro.2016.02.011
Rais, A., Shakeel, M., Malik, K., Hafeez, F. Y., Yasmin, H., Mumtaz, S., & Hassan, M. N. (2018). Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions. Microbiological Research, 208, 54-62. https://doi.org/10.1016/j.micres.2018.01.009
Reddy, P. P. (2014). Plant growth promoting rhizobacteria for horticultural crop protection. New Delhi, India: Springer. https://doi.org/10.1007/978-81-322-1973-6
Richardson, A. E., & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 156(3), 989-996. https://doi.org/10.1104/pp.111.175448
Richardson, A. E., Barea, J.-M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321, 305-339. https://doi.org/10.1007/s11104-009-9895-2
Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilising bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4-5), 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
Romero, F. M., Marina, M., & Pieckenstain, F. L. (2016). Novel components of leaf bacterial communities of field-grown tomato plantand their potential for plant growth promotion and biocontrol of tomato diseases. Research in Microbiology, 167(3), 222-233. https://doi.org/10.1016/j.resmic.2015.11.001
Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932. https://doi.org/10.1073/pnas.0730845100
Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 21, 30.
Sammauria, R., Kumawat, S., Kumawat, P., Singh, J. & Jatwa, T. K. (2020). Microbial inoculants: potential tool for sustainability of agricultural production systems. Archives of Microbiology, 202, 677-693. https://doi.org/10.1007/s00203-019-01795-w
Sarwar, A., Hassan, M. N., Imran, M., Iqbal, M., Majeed, S., Brader, G., Sessitsch, A., & Hafeez, F. Y. (2018). Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiological Research, 209, 1-13. https://doi.org/10.1016/j.micres.2018.01.006
Sharma, P., Sangwan, S., Kaur, H., Patra, A., Anamika, & Mehta, S. (2023). Diversity and Evolution of Nitrogen Fixing Bacteria. In N. K. Singh, A. Chattopadhyay & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews 60: Microbial Processes in Agriculture (Vol. 60, pp. 95-120) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-031-24181-9_5
Sharma, R. K., & Archana, G. (2016). Cadmium minimisation in food crops by cadmium resistant plant growth promoting rhizobacteria. Applied Soil Ecology, 107, 66-78. https://doi.org/10.1016/j.apsoil.2016.05.009
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilising microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587. https://doi.org/10.1186/2193-1801-2-587
Sheng, X. F., & He, L. Y. (2006). Solubilisation of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology, 52(1), 66-72. https://doi.org/10.1139/w05-117
Someya, N., Nakajima, M., Tadaaki, H., Yamaguchi, I., & Akutsu, K. (2002). Induced resistance to rice blast by antagonistic bacterium, Serratia marcescens strain B2. Journal of General Plant Pathology, 68, 177-182. https://doi.org/10.1007/PL00013073
Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9(8), 1011. https://doi.org/10.3390/plants9081011
Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
Sun, G., Yao, T., Feng, C., Chen, L., Li, J., & Wang, L. (2017). Identification and biocontrol potential of antagonistic bacteria strain against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biological Control, 104, 35-43. https://doi.org/10.1016/j.biocontrol.2016.10.008
Tian, F., Ding, Y., Zhu, H., Yao, L., & Du, B. (2009). Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Brazilian Journal of Microbiology, 40(2), 276-284. https://doi.org/10.1590/S1517-83822009000200013
Vallad, G. E., & Goodman, R. M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44(6), 1920-1934. https://doi.org/10.2135/cropsci2004.1920
van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243-254. https://doi.org/10.1007/s10658-007-9165-1
Verma, M., Mishra, J., & Arora, N. K. (2019). Plant growth-promoting rhizobacteria: diversity and applications. In R. C. Sobti, N. K. Arora & R. Kothari (Eds.), Environmental Biotechnology: For Sustainable Future (pp. 129-173) Singapore: Springer. https://doi.org/10.1007/978-981-10-7284-0_6
Westover, K. M., Kennedy, A. C., & Kelley, S. E. (1997). Patterns of rhizosphere microbial community structure associated with co-occurring plant species. Journal of Ecology, 85(6), 863-873. https://doi.org/10.2307/2960607
Worldometers. (2023). World Population (2023). Retrieved from https://www.worldometers.info/world-population/world-population-projections/
Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125(1-2), 155-166. https://doi.org/10.1016/j.geoderma.2004.07.003
Wu, Y., Zhao, C., Farmer, J., & Sun, J. (2015). Effects of bio-organic fertiliser on pepper growth and Fusarium wilt biocontrol. Scientia Horticulturae, 193, 114-120. https://doi.org/10.1016/j.scienta.2015.06.039
Xiong, J., Zhou, Q., Luo, H., Xia, L., Li, L., Sun, M., & Yu, Z. (2015). Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita. World Journal of Microbiology and Biotechnology, 31, 661-667. https://doi.org/10.1007/s11274-015-1820-7
Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4), 968-989. https://doi.org/10.1128/MMBR.63.4.968-989.1999
Zakry, F. A. A., Shamsuddin, Z. H., Rahim, K. A., Zakaria, Z. Z., & Rahim, A. A. (2012). Inoculation of Bacillus sphaericus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the 15N isotope dilution technique. Microbes and Environments, 27(3), 257-262. https://doi.org/10.1264/jsme2.ME11309
Zhang, C., & Kong, F. (2014). Isolation and identification of potassium-solubilising bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology, 82, 18-25. https://doi.org/10.1016/j.apsoil.2014.05.002
Zörb, C., Senbayram, M., & Peiter, E. (2014). Potassium in agriculture-status and perspectives. Journal of Plant Physiology, 171(9), 656-669. https://doi.org/10.1016/j.jplph.2013.08.008
Published
How to Cite
Issue
Section
Copyright (c) 2023 Amirul H. Muhammad Umar, Fitri A. A. Zakry, Mohammad Fitri A. Rahman, Muhammad I. N. H. Mohammad Sazali, Franklin Ragai Kundat, Masnindah Malahubban, Martini Mohammad Yusoff, Mohammad Hailmi Sajili
This work is licensed under a Creative Commons Attribution 4.0 International License.