Effect of heat stress on dairy cow production, reproduction, health, and potential mitigation strategies

Authors

  • Abdul Rahman Sesay Department of Animal Science, Njala Campus, Njala University, Sierra Leone

DOI:

https://doi.org/10.21839/jaar.2023.v8.8371

Keywords:

Climate change, Dairy cows, Genomic selection, Heat stress, Management strategies

Abstract

Extreme weather events are becoming more common and more severe as a result of climate change, and this has serious implications for the future of livestock, farmer income and livelihoods, and food security worldwide. Dairy cattle have become more heat sensitive due to selective breeding for higher production and increased feedlot operations. The harmful effects of heat stress cause hyperthermia, oxidative stress, and other physiological changes in dairy cows. Environmental heat stress causes a decrease in feed intake, leading to a decrease in milk production in dairy cows. The main method to check for reductions in milk production in dairy cows during the summer is an accurate evaluation of heat stress and effective mitigation strategies. Three primary management strategies have been proposed to reduce heat stress and stabilize dairy cattle performance in increasingly hot and humid climates. Short-term management options include physical alteration of the environment and nutritional management, while long-term management strategy includes discovering heat-tolerant genetic traits and genomic selection for heat tolerance. This review looks at how heat stress has affected the dairy industry’s sustainability and elaborates on genomic selection for thermotolerance in dairy cattle as sustainable breeding practices to increase dairy cows’ ability to withstand high temperatures.

Downloads

Download data is not yet available.

References

Adin, G., Gelman, A., Solomon, R., Flamenbaum, I., Nikbachat, M., Yosef, E., Zenou, A., Shamay, A., Feuermann, Y., Mabjeesh, S. J., & Miron, J. (2009). Effects of cooling dry cows under heat load conditions on mammary gland enzymatic activity, intake of food and water, and performance during the dry period and after parturition. Livestock Science, 124(1-3), 189-195. https://doi.org/10.1016/j.livsci.2009.01.014

Adnane, M., Kaidi, R., Hanzen, C., & England, G. C. W. (2017). Risk factors of clinical and subclinical endometritis in cattle: a review. Turkish Journal of Veterinary & Animal Sciences, 41(1), 1-11. https://doi.org/10.3906/vet-1603-63

Aggarwal, A., & Upadhyay, R. (2013). Heat stress and animal productivity (Vol. 188). Delhi, India: Springer.

Aguilar, I., Misztal, I., & Tsuruta, S. (2009). Genetic components of heat stress for dairy cattle with multiple lactations. Journal of Dairy Science, 92(11), 5702-5711. https://doi.org/10.3168/jds.2008-1928

Angilletta Jr, M. J. (2009). Thermal adaptation: a theoretical and empirical synthesis. https://doi.org/10.1093/acprof:oso/9780198570875.001.1

Angrecka, S., & Herbut, P. (2016). Impact of barn orientation on insolation and temperature of stalls surface. Annals of Animal Science, 16(3), 887-896. https://doi.org/10.1515/aoas-2015-0096

Atrian, P., & Shahryar, H. A. (2012). Heat stress in dairy cows (a review). Research in Zoology, 2(4), 31-37.

Aublet, J.-F., Festa-Bianchet, M., Bergero, D., & Bassano, B. (2009). Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia, 159(1), 237-247. https://doi.org/10.1007/s00442-008-1198-4

Ayo, J. O., Obidi, J. A., & Rekwot, P. I. (2011). Effects of heat stress on the well-being, fertility, and hatchability of chickens in the northern Guinea savannah zone of Nigeria: a review. International Scholarly Research Notices, 2011, 838606. https://doi.org/10.5402/2011/838606

Baumgard, L. H., Rhoads, R. P., & Moore, C. E. (2007). The effects of heat stress on production and its nutritional implications. Proceedings Penn State Cattle Nutrition Workshop, 29-38.

Baumgard, L. H., Wheelock, J. B., Sanders, S. R., Moore, C. E., Green, H. B., Waldron, M. R., & Rhoads, R. P. (2011). Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows. Journal of Dairy Science, 94(11), 5620-5633. https://doi.org/10.3168/jds.2011-4462

Berman, A. (2005). Estimates of heat stress relief needs for Holstein dairy cows. Journal of Animal Science, 83(6), 1377-1384. https://doi.org/10.2527/2005.8361377x

Berman, A. (2011). Invited review: Are adaptations present to support dairy cattle productivity in warm climates? Journal of Dairy Science, 94(5), 2147-2158. https://doi.org/10.3168/jds.2010-3962

Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 97(1), 471-486. https://doi.org/10.3168/jds.2013-6611

Bernabucci, U., Lacetera, N., Baumgard, L. H., Rhoads, R. P., Ronchi, B., & Nardone, A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4(7), 1167-1183. https://doi.org/10.1017/s175173111000090x

Bicalho, M. L. S., Lima, F. S., Ganda, E. K., Foditsch, C., Meira Jr, E. B. S., Machado, V. S., Teixeira, A. G. V., Oikonomou, G., Gilbert, R. O., & Bicalho, R. C. (2014). Effect of trace mineral supplementation on selected minerals, energy metabolites, oxidative stress, and immune parameters and its association with uterine diseases in dairy cattle. Journal of Dairy Science, 97(7), 4281-4295. https://doi.org/10.3168/jds.2013-7832

Bilby, T. R. (2011). Nutritional, managerial and hormonal strategies to mitigate the negative effects of heat stress on reproduction. Revista Brasileira de Zootechnia, 1-14.

Bin-Jumah, M., El-Hack, M. E. A., Abdelnour, S. A., Hendy, Y. A., Ghanem, H. A., Alsafy, S. A., Khafaga, A. F., Noreldin, A. E., Shaheen, H., Samak, D., Momenah, M. A., Allam, A. A., Alkahtane, A. A., Alkahtani, S., Abdel-Daim, M. M., & Aleya, L. (2020). Potential use of chromium to combat thermal stress in animals: A review. Science of the Total Environment, 707, 135996. https://doi.org/10.1016/j.scitotenv.2019.135996

Binsiya, T. K., Sejian, V., Bagath, M., Krishnan, G., Hyder, I., Manimaran, A., Lees, A. M., Gaughan, J. B., & Bhatta, R. (2017). Significance of hypothalamic-pituitary-adrenal axis to adapt to climate change in livestock. International Research Journal of Agricultural and Food Sciences, 2(1), 1-20.

Biswal, S., Nayak, D. C., & Sardar, K. K. (2016). Prevalence of ketosis in dairy cows in milk shed areas of Odisha state, India. Veterinary World, 9(11), 1242-1247. https://doi.org/10.14202/vetworld.2016.1242-1247

Bohmanova, J., Misztal, I., & Cole, J. B. (2007). Temperature-humidity indices as indicators of milk production losses due to heat stress. Journal of Dairy Science, 90(4), 1947-1956. https://doi.org/10.3168/jds.2006-513

Bouraoui, R., Lahmar, M., Majdoub, A., & Belyea, R. (2002). The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research, 51(6), 479-491. https://doi.org/10.1051/animres:2002036

Brito, L. F., Bedere, N., Douhard, F., Oliveira, H. R., Arnal, M., Peñagaricano, F., Schinckel, A. P., Baes, C. F., & Miglior, F. (2021). Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal, 15(S1), 100292. https://doi.org/10.1016/j.animal.2021.100292

Cagle, C. M., Batista, L. F. D., Anderson, R. C., Fonseca, M. A., Cravey, M. D., Julien, C., & Tedeschi, L. O. (2019). Evaluation of different inclusion levels of dry live yeast impacts on various rumen parameters and in situ digestibilities of dry matter and neutral detergent fiber in growing and finishing beef cattle. Journal of Animal Science, 97(12), 4987-4998. https://doi.org/10.1093/jas/skz342

Calus, M. P. L., Berry, D. P., Banos, G., de Haas, Y., & Veerkamp, R. F. (2013). Genomic selection: the option for new robustness traits? Advances in Animal Biosciences, 4(3), 618-625. https://doi.org/10.1017/S2040470013000186

Carabaño, M. J., Ramón, M., Menéndez-Buxadera, A., Molina, A., & Díaz, C. (2019). Selecting for heat tolerance. Animal Frontiers, 9(1), 62-68. https://doi.org/10.1093/af/vfy033

Carvalheiro, R., Costilla, R., Neves, H. H. R., Albuquerque, L. G., Moore, S., & Hayes, B. J. (2019). Unraveling genetic sensitivity of beef cattle to environmental variation under tropical conditions. Genetics Selection Evolution, 51, 29. https://doi.org/10.1186/s12711-019-0470-x

Castro-Montoya, J., & Corea, E. E. (2021). Heat stress effects in primiparous and multiparous lactating crossbred cows under a warm environment and their responses to a cooling treatment. Animal Production Science, 61(6), 577-585. https://doi.org/10.1071/AN19398

Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P., & Meinke, H. (2017). The impact of extreme climatic events on pasture-based dairy systems: a review. Crop and Pasture Science, 68(12), 1158-1169. https://doi.org/10.1071/CP16394

Cheruiyot, E. K., Haile-Mariam, M., Cocks, B. G., MacLeod, I. M., Xiang, R., & Pryce, J. E. (2021). New loci and neuronal pathways for resilience to heat stress in cattle. Scientific Reports, 11(1), 16619. https://doi.org/10.1038/s41598-021-95816-8

Collier, R. J., & Gebremedhin, K. G. (2015). Thermal biology of domestic animals. Annual Review of Animal Biosciences, 3, 513-532. https://doi.org/10.1146/annurev-animal-022114-110659

Collier, R. J., Collier, J. L., Rhoads, R. P., & Baumgard, L. H. (2008). Invited review: genes involved in the bovine heat stress response. Journal of Dairy Science, 91(2), 445-454. https://doi.org/10.3168/jds.2007-0540

Conte, G., Ciampolini, R., Cassandro, M., Lasagna, E., Calamari, L., Bernabucci, U., & Abeni, F. (2018). Feeding and nutrition management of heat-stressed dairy ruminants. Italian Journal of Animal Science, 17(3), 604-620. https://doi.org/10.1080/1828051X.2017.1404944

Dahl, G. E. (2020). Physiology of lactation in dairy cattle-challenges to sustainable production. In F. W. Bazer, G. C. Lamb & G. Wu (Eds.), Animal agriculture: Sustainability, Challenges and Innovations (pp. 121-129). Massachusetts, United States: Academic Press. https://doi.org/10.1016/B978-0-12-817052-6.00007-0

Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260-268.

De Rensis, F., & Scaramuzzi, R. J. (2003). Heat stress and seasonal effects on reproduction in the dairy cow-a review. Theriogenology, 60(6), 1139-1151. https://doi.org/10.1016/s0093-691x(03)00126-2

De Rensis, F., Garcia-Ispierto, I., & López-Gatius, F. (2015). Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows. Theriogenology, 84(5), 659-666. https://doi.org/10.1016/j.theriogenology.2015.04.021

Deng, L., Feng, J., & Broaddus, R. R. (2010). The novel estrogen-induced gene EIG121 regulates autophagy and promotes cell survival under stress. Cell Death & Disease, 1(4), e32. https://doi.org/10.1038/cddis.2010.9

Dikmen, S., Alava, E., Pontes, E., Fear, J. M., Dikmen, B. Y., Olson, T. A., & Hansen, P. J. (2008). Differences in thermoregulatory ability between slick-haired and wild-type lactating Holstein cows in response to acute heat stress. Journal of Dairy Science, 91(9), 3395-3402. https://doi.org/10.3168/jds.2008-1072

Dikmen, S., Cole, J. B., Null, D. J., & Hansen, P. J. (2012). Heritability of rectal temperature and genetic correlations with production and reproduction traits in dairy cattle. Journal of Dairy Science, 95(6), 3401-3405. https://doi.org/10.3168/jds.2011-4306

Dikmen, S., Cole, J. B., Null, D. J., & Hansen, P. J. (2013). Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle. PloS One, 8(7), e69202. https://doi.org/10.1371/journal.pone.0069202

Dikmen, S., Khan, F. A., Huson, H. J., Sonstegard, T. S., Moss, J. I., Dahl, G. E., & Hansen, P. J. (2014). The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. Journal of Dairy Science, 97(9), 5508-5520. https://doi.org/10.3168/jds.2014-8087

Dubuc, J., Duffield, T. F., Leslie, K. E., Walton, J. S., & LeBlanc, S. J. (2011). Effects of postpartum uterine diseases on milk production and culling in dairy cows. Journal of Dairy Science, 94(3), 1339-1346. https://doi.org/10.3168/jds.2010-3758

Early, R. (1998). Milk concentrates and milk powders. The technology of dairy products, 2.

Ehrlemark, A. G., & Sällvik, K. G. (1996). A model of heat and moisture dissipation from cattle based on thermal properties. Transactions of the ASAE, 39(1), 187-194. https://doi.org/10.13031/2013.27497

El-Tarabany, M. S., & El-Tarabany, A. A. (2015). Impact of maternal heat stress at insemination on the subsequent reproductive performance of Holstein, Brown Swiss, and their crosses. Theriogenology, 84(9), 1523-1529. https://doi.org/10.1016/j.theriogenology.2015.07.040

Escarcha, J. F., Lassa, J. A., & Zander, K. K. (2018). Livestock under climate change: a systematic review of impacts and adaptation. Climate, 6(3), 54. https://doi.org/10.3390/cli6030054

FAO. (2018). The future of food and agriculture – Alternative pathways to 2050. Italy, Rome: Food and Agriculture Organization of the United Nations. Retrieved from https://www.fao.org/3/CA1553EN/ca1553en.pdf

Farooq, U., Samad, H. A., Shehzad, F., & Qayyum, A. (2010). Physiological responses of cattle to heat stress. World Applied Sciences Journal, 8, 38-43.

Forbes, J. M. (2007). Environmental factors affecting intake. In J. M. Forbes (Eds.), Voluntary Food Intake and Diet Selection in Farm Animals (pp. 365-390) Wallingford, UK: CABI. 365-390.

Gagge, A. P., & Gonzalez, R. R. (2010). Mechanisms of heat exchange: biophysics and physiology. Comprehensive Physiology, 45-84. https://doi.org/10.1002/cphy.cp040104

Gao, S. T., Ma, L., Zhou, Z., Zhou, Z. K., Baumgard, L. H., Jiang, D., Bionaz, M., & Bu, D. P. (2019). Heat stress negatively affects the transcriptome related to overall metabolism and milk protein synthesis in mammary tissue of midlactating dairy cows. Physiological Genomics, 51(8), 400-409. https://doi.org/10.1152/physiolgenomics.00039.2019

Gebremedhin, K. G., Wu, B., & Perano, K. (2016). Modeling conductive cooling for thermally stressed dairy cows. Journal of Thermal Biology, 56, 91-99. https://doi.org/10.1016/j.jtherbio.2016.01.004

Geiger, T., Gütschow, J., Bresch, D. N., Emanuel, K., & Frieler, K. (2021). Double benefit of limiting global warming for tropical cyclone exposure. Nature Climate Change, 11, 861-866. https://doi.org/10.1038/s41558-021-01157-9

Ghosh, C. P., Kesh, S. S., Tudu, N. K., & Datta, S. (2017). Heat stress in dairy animals-Its impact and remedies: A review. International Journal of Pure & Applied Bioscience, 5(1), 953-965. https://doi.org/10.18782/2320-7051.2577

Golher, D. M., Patel, B. H. M., Bhoite, S. H., Syed, M. I., Panchbhai, G. J., & Thirumurugan, P. (2021). Factors influencing water intake in dairy cows: a review. International Journal of Biometeorology, 65, 617-625. https://doi.org/10.1007/s00484-020-02038-0

Gorniak, T., Meyer, U., Südekum, K.-H., & Dänicke, S. (2014). Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Archives of Animal Nutrition, 68(5), 358-369. https://doi.org/10.1080/1745039x.2014.950451

Grisart, B., Farnir, F., Karim, L., Cambisano, N., Kim, J.-J., Kvasz, A., Mni, M., Simon, P., Frère, J.-M., Coppieters, W., & Georges, M. (2004). Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences, 101(8), 2398-2403. https://doi.org/10.1073/pnas.0308518100

Habeeb, A. A., Gad, A. E., & Atta, M. A. (2018). Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. International Journal of Biotechnology and Recent Advances, 1(1), 35-50.

Han, J., Shao, J., Chen, Q., Sun, H., Guan, L., Li, Y., Liu, J., & Liu, H. (2019). Transcriptional changes in the hypothalamus, pituitary, and mammary gland underlying decreased lactation performance in mice under heat stress. The FASEB Journal, 33(11), 12588-12601. https://doi.org/10.1096/fj.201901045r

Hankenson, F. C., Marx, J. O., Gordon, C. J., & David, J. M. (2018). Effects of rodent thermoregulation on animal models in the research environment. Comparative Medicine, 68(6), 425-438. https://doi.org/10.30802/aalas-cm-18-000049

Hansen, P. J. (2007). Effects of environment on bovine reproduction. Current Therapy in Large Animal Theriogenology, 431-442.

Heal, G., & Park, J. (2016). Reflections - temperature stress and the direct impact of climate change: a review of an emerging literature. Review of Environmental Economics and Policy, 10(2). https://doi.org/10.1093/reep/rew007

Hempel, S., Menz, C., Pinto, S., Galán, E., Janke, D., Estellés, F., Müschner-Siemens, T., Wang, X., Heinicke, J., Zhang, G., Amon, B., del Prado, A., & Amon, T. (2019). Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts. Earth System Dynamics, 10(4), 859-884. https://doi.org/10.5194/esd-10-859-2019

Henry, B. K., Eckard, R. J., & Beauchemin, K. A. (2018). Adaptation of ruminant livestock production systems to climate changes. Animal, 12(S2), s445-s456. https://doi.org/10.1017/S1751731118001301

Heras-Molina, A., Pacheco, J. L. P., & Astiz, S. (2020). Reproductive Efficiency in Dairy Cows: Change in Trends! In J. C. Gardón & K. Satué (Eds.), Biotechnologies Applied to Animal Reproduction (pp. 87-138) New York, US: Apple Academic Press.

Herbut, P., & Angrecka, S. (2012). Forming of temperature-humidity index (THI) and milk production of cows in the free-stall barn during the period of summer heat. Animal Science Papers and Reports, 30(4), 363-372.

Herbut, P., Angrecka, S., & Walczak, J. (2018). Environmental parameters to assessing of heat stress in dairy cattle - a review. International Journal of Biometeorology, 62, 2089-2097. https://doi.org/10.1007/s00484-018-1629-9

Hernández-Cordero, A. I., Sánchez-Castro, M. A., Zamorano-Algandar, R., Luna-Nevárez, P., Rincón, G., Medrano, J. F., Speidel, S. E., Enns, R. M., & Thomas, M. G. (2017). Genotypes within the prolactin and growth hormone insulin-like growth factor-I pathways associated with milk production in heat stressed Holstein cattle. Genetics and Molecular Research, 16(4), gmr16039821. https://doi.org/10.4238/gmr16039821

Huhtanen, P., Rinne, M., & Nousiainen, J. (2007). Evaluation of the factors affecting silage intake of dairy cows: a revision of the relative silage dry-matter intake index. Animal, 1(5), 758-770. https://doi.org/10.1017/S175173110773673X

Humer, E., Petri, R. M., Aschenbach, J. R., Bradford, B. J., Penner, G. B., Tafaj, M., Südekum, K.-H., & Zebeli, Q. (2018). Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. Journal of Dairy Science, 101(2), 872-888. https://doi.org/10.3168/jds.2017-13191

Huson, H. J., Kim, E.-S., Godfrey, R. W., Olson, T. A., McClure, M. C., Chase, C. C., & Rizzi, R., O'Brien, A. M. P., Tassell, C. P. V., Garcia, J. F., & Sonstegard, T. S. (2014). Genome-wide association study and ancestral origins of the slick-hair coat in tropically adapted cattle. Frontiers in Genetics, 5, 101. https://doi.org/10.3389/fgene.2014.00101

Jevrejeva, S., Jackson, L. P., Riva, R. E., Grinsted, A., & Moore, J. C. (2016). Coastal sea level rise with warming above 2 °C. Proceedings of the National Academy of Sciences, 113(47), 13342-13347. https://doi.org/10.1073/pnas.1605312113

Jose, B., Konda, P. K., Tripathi, M. K., Sharun, K., Kumar, S., Singh, G., Sarkar, M., & Kumar, P. (2020). Appraisal of Thermo-adaptability among Tharparkar and Crossbred Cattle Calves. International Journal of Current Microbiology and Applied Sciences, 9(11), 1588-1594. https://doi.org/10.20546/ijcmas.2020.911.188

Kadzere, C. T., Murphy, M. R., Silanikove, N., & Maltz, E. (2002). Heat stress in lactating dairy cows: a review. Livestock production science, 77(1), 59-91. https://doi.org/10.1016/S0301-6226(01)00330-X

Kamal, R., Dutt, T., Patel, M., Dey, A., Chandran, P. C., Bharti, P. K., & Barari, S. K. (2016). Behavioural, biochemical and hormonal responses of heat-stressed crossbred calves to different shade materials. Journal of Applied Animal Research, 44(1), 347-354. https://doi.org/10.1080/09712119.2015.1074076

Kaufman, J. D. (2016). Effect of Varying Rumen Degradable and Undegradable Protein on Milk Production and Nitrogen Efficiency in Lactating Dairy Cows under Summer Conditions. Master Thesis, University of Tennessee.

Khodaei-Motlagh, M., Shahneh, A. Z., Masoumi, R., & Derensis, F. (2011). Alterations in reproductive hormones during heat stress in dairy cattle. African Journal of Biotechnology, 10(29), 5552-5558.

Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. https://doi.org/10.3168/jds.2013-7234

Kolbe, T., Lassnig, C., Poelzl, A., Palme, R., Auer, K. E., & Rülicke, T. (2022). Effect of Different Ambient Temperatures on Reproductive Outcome and Stress Level of Lactating Females in Two Mouse Strains. Animals, 12(16), 2141. https://doi.org/10.3390/ani12162141

Kuczynski, T., Blanes-Vidal, V., Li, B., Gates, R. S., de Alencar Naas, I., Moura, D. J., Berckmans, D., & Banhazi, T. M. (2011). Impact of global climate change on the health, welfare and productivity of intensively housed livestock. International Journal of Agricultural and Biological Engineering, 4(2), 1-22.

Kundu, S. S., Mani, V., & Sontake, U. (2013). Feeding strategies for cattle and buffalo under climate change scenario for sustaining productivity. In S. V. Singh, R. C. Upadhyay, S. Sirohi & A. K. Singh (Eds.), Climate Resilient Livestock & Production System (pp. 126-141) Haryana, India: National Dairy Research Institute.

Lezama-García, K., Mota-Rojas, D., Pereira, A. M. F., Martínez-Burnes, J., Ghezzi, M., Domínguez, A., Gómez, J., de Mira Geraldo, A., Lendez, P., Hernández-Ávalos, I., Falcón, I., Olmos-Hernández, A., & Wang, D. (2022). Transient receptor potential (TRP) and thermoregulation in animals: Structural biology and neurophysiological aspects. Animals, 12(1), 106. https://doi.org/10.3390/ani12010106

Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T.,…Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068-1072. https://doi.org/10.1038/nclimate2437

Littlejohn, M. D., Tiplady, K., Fink, T. A., Lehnert, K., Lopdell, T., Johnson, T., Couldrey, C., Keehan, M., Sherlock, R. G., Harland, C., Scott, A., Snell, R. G., Davis, S. R., & Spelman, R. J. (2016). Sequence-based association analysis reveals an MGST1 eQTL with pleiotropic effects on bovine milk composition. Scientific Reports, 6(1), 25376. https://doi.org/10.1038/srep25376

Liu, S., Yue, T., Ahmad, M. J., Hu, X., Zhang, X., Deng, T., Hu, Y., He, C., Zhou, Y., & Yang, L. (2020). Transcriptome analysis reveals potential regulatory genes related to heat tolerance in holstein dairy cattle. Genes, 11(1), 68. https://doi.org/10.3390/genes11010068

Luo, H., Li, X., Hu, L., Xu, W., Chu, Q., Liu, A., Guo, G., Liu, L., Brito, L. F., & Wang, Y. (2021). Genomic analyses and biological validation of candidate genes for rectal temperature as an indicator of heat stress in Holstein cattle. Journal of Dairy Science, 104(4), 4441-4451. https://doi.org/10.3168/jds.2020-18725

Macciotta, N. P. P., Biffani, S., Bernabucci, U., Lacetera, N., Vitali, A., Ajmone-Marsan, P., & Nardone, A. (2017). Derivation and genome-wide association study of a principal component-based measure of heat tolerance in dairy cattle. Journal of Dairy Science, 100(6), 4683-4697. https://doi.org/10.3168/jds.2016-12249

Mader, T. L., Gaughan, J. B., Johnson, L. J., & Hahn, G. L. (2010). Tympanic temperature in confined beef cattle exposed to excessive heat load. International Journal of Biometeorology, 54, 629-635. https://doi.org/10.1007/s00484-009-0229-0

Madhusoodan, A. P., Sejian, V., Rashamol, V. P., Savitha, S. T., Bagath, M., Krishnan, G., & Bhatta, R. (2019). Resilient capacity of cattle to environmental challenges–An updated review. Journal of Animal Behaviour and Biometeorology, 7(3), 104-118. https://doi.org/10.31893/2318-1265jabb.v7n3p104-118

McDowell, R. E., Hooven, N. W., & Camoens, J. K. (1976). Effect of climate on performance of Holsteins in first lactation. Journal of Dairy Science, 59(5), 965-971. https://doi.org/10.3168/jds.S0022-0302(76)84305-6

Meneses, J. A. M., de Sá, O. A. A. L., Coelho, C. F., Pereira, R. N., Batista, E. D., Ladeira, M. M., Casagrande, D. R., & Gionbelli, M. P. (2021). Effect of heat stress on ingestive, digestive, ruminal and physiological parameters of Nellore cattle feeding low-or high-energy diets. Livestock Science, 252, 104676. https://doi.org/10.1016/j.livsci.2021.104676

Michael, P., de Cruz, C. R., Nor, N. M., Jamli, S., & Goh, Y. M. (2022). The Potential of Using Temperate–Tropical Crossbreds and Agricultural by-Products, Associated with Heat Stress Management for Dairy Production in the Tropics: A Review. Animals, 12(1), 1. https://doi.org/10.3390/ani12010001

Min, L., Li, D., Tong, X., Nan, X., Ding, D., Xu, B., & Wang, G. (2019). Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: a review. International Journal of Biometeorology, 63, 1283-1302. https://doi.org/10.1007/s00484-019-01744-8

Min, S.-K., Simonis, D., & Hense, A. (2007). Probabilistic climate change predictions applying Bayesian model averaging. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2103-2116. https://doi.org/10.1098/rsta.2007.2070

Moran, J. (2005). Tropical dairy farming: feeding management for small holder dairy farmers in the humid tropics. Clayton, Australia: CSIRO publishing.

Mordak, R., & Stewart, P. A. (2015). Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: examples of prevention. Acta Veterinaria Scandinavica, 57, 84. https://doi.org/10.1186/s13028-015-0175-2

Mota-Rojas, D., Titto, C. G., Orihuela, A., Martínez-Burnes, J., Gómez-Prado, J., Torres-Bernal, F., Flores-Padilla, K., Carvajal-de la Fuente, C., & Wang, D. (2021). Physiological and behavioral mechanisms of thermoregulation in mammals. Animals, 11(6), 1733. https://doi.org/10.3390/ani11061733

Nabenishi, H., Ohta, H., Nishimoto, T., Morita, T., Ashizawa, K., & Tsuzuki, Y. (2012). The effects of cysteine addition during in vitro maturation on the developmental competence, ROS, GSH and apoptosis level of bovine oocytes exposed to heat stress. Zygote, 20(3), 249-259. https://doi.org/10.1017/S0967199411000220

Nardone, A., Ronchi, B., Lacetera, N., & Bernabucci, U. (2006). Climatic effects on productive traits in livestock. Veterinary Research Communications, 30, 75-81. https://doi.org/10.1007/s11259-006-0016-x

Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1-3), 57-69. https://doi.org/10.1016/j.livsci.2010.02.011

Nguyen, T. T. T., Bowman, P. J., Haile-Mariam, M., Pryce, J. E., & Hayes, B. J. (2016). Genomic selection for tolerance to heat stress in Australian dairy cattle. Journal of Dairy Science, 99(4), 2849-2862. https://doi.org/10.3168/jds.2015-9685

Nienaber, J. A., & Hahn, G. L. (2007). Livestock production system management responses to thermal challenges. International Journal of Biometeorology, 52, 149-157. https://doi.org/10.1007/s00484-007-0103-x

Olson, T. A., Lucena, C., Chase Jr, C. C., & Hammond, A. C. (2003). Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. Journal of Animal Science, 81(1), 80-90. https://doi.org/10.2527/2003.81180x

Orief, Y. I., Karkor, T. A. E., Saleh, H. A., El Hadidy, A. S., & Badr, N. (2014). Comparative evaluation of vascular endothelial growth factor-A expression in pre-ovulatory follicular fluid in normogonadotrophic and endometriotic patients undergoing assisted reproductive techniques. Middle East Fertility Society Journal, 19(4), 248-261. https://doi.org/10.1016/j.mefs.2013.06.002

Osei-Amponsah, R., Chauhan, S. S., Leury, B. J., Cheng, L., Cullen, B., Clarke, I. J., & Dunshea, F. R. (2019). Genetic selection for thermotolerance in ruminants. Animals, 9(11), 948. https://doi.org/10.3390/ani9110948

Panda, S., Panda, N., Panigrahy, K. K., Gupta, S. K., Mishra, S. P., & Laishram, M. (2017). Role of niacin supplementation in dairy cattle: A review. Asian Journal of Dairy and Food Research, 36(2), 93-99. https://doi.org/10.18805/ajdfr.v36i02.7949

Patra, A. K., & Kar, I. (2021). Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. Journal of Animal Science and Technology, 63(2), 211-247. https://doi.org/10.5187/jast.2021.e48

Polsky, L. B., Madureira, A. M. L., Filho, E. L. D., Soriano, S., Sica, A. F., Vasconcelos, J. L. M., & Cerri, R. L. A. (2017). Association between ambient temperature and humidity, vaginal temperature, and automatic activity monitoring on induced estrus in lactating cows. Journal of Dairy Science, 100(10), 8590-8601. https://doi.org/10.3168/jds.2017-12656

Polsky, L., & von Keyserlingk, M. A. G. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645-8657. https://doi.org/10.3168/jds.2017-12651

Ravagnolo, O., Misztal, I., & Hoogenboom, G. (2000). Genetic component of heat stress in dairy cattle, development of heat index function. Journal of Dairy Science, 83(9), 2120-2125. https://doi.org/10.3168/jds.s0022-0302(00)75094-6

Rejeb, M., Sadraoui, R., Najar, T., & M’rad, M. B. (2016). A complex interrelationship between rectal temperature and dairy cows’ performance under heat stress conditions. Open Journal of Animal Sciences, 6(1), 24-30. https://doi.org/10.4236/ojas.2016.61004

Rhoads, M. L., Rhoads, R. P., VanBaale, M. J., Collier, R. J., Sanders, S. R., Weber, W. J., Crooker, B. A., & Baumgard, L. H. (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. Journal of Dairy Science, 92(5), 1986-1997. https://doi.org/10.3168/jds.2008-1641

Rhoads, R. P., Baumgard, L. H., Suagee, J. K., & Sanders, S. R. (2013). Nutritional interventions to alleviate the negative consequences of heat stress. Advances in Nutrition, 4(3), 267-276. https://doi.org/10.3945/an.112.003376

Roth, Z. (2008). Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential strategies to improve fertility in dairy cows. Reproduction in Domestic Animals, 43(S2), 238-244. https://doi.org/10.1111/j.1439-0531.2008.01168.x

Roushdy, E. M., Zaglool, A. W., & El-Tarabany, M. S. (2018). Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains. Journal of Thermal Biology, 74, 337-343. https://doi.org/10.1016/j.jtherbio.2018.04.009

Sammad, A., Umer, S., Shi, R., Zhu, H., Zhao, X., & Wang, Y. (2020a). Dairy cow reproduction under the influence of heat stress. Journal of Animal Physiology and Animal Nutrition, 104(4), 978-986. https://doi.org/10.1111/jpn.13257

Sammad, A., Wang, Y. J., Umer, S., Lirong, H., Khan, I., Khan, A., Ahmad, B., & Wang, Y. (2020b). Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities. Animals, 10(5), 793. https://doi.org/10.3390/ani10050793

Schoenberg, K. M., & Overton, T. R. (2011). Effects of plane of nutrition and 2, 4-thiazolidinedione on insulin responses and adipose tissue gene expression in dairy cattle during late gestation. Journal of Dairy Science, 94(12), 6021-6035. https://doi.org/10.3168/jds.2011-4533

Sejian, V., Bhatta, R., Gaughan, J. B., Dunshea, F. R., & Lacetera, N. (2018). Adaptation of animals to heat stress. Animal, 12(S2), s431-s444. https://doi.org/10.1017/S1751731118001945

Settivari, R. S., Spain, J. N., Ellersieck, M. R., Byatt, J. C., Collier, R. J., & Spiers, D. E. (2007). Relationship of thermal status to productivity in heat-stressed dairy cows given recombinant bovine somatotropin. Journal of Dairy Science, 90(3), 1265-1280. https://doi.org/10.3168/jds.S0022-0302(07)71615-6

Shu, H., Wang, W., Guo, L., & Bindelle, J. (2021). Recent advances on early detection of heat strain in dairy cows using animal-based indicators: a review. Animals, 11(4), 980. https://doi.org/10.3390/ani11040980

Shwartz, G., Rhoads, M. L., VanBaale, M. J., Rhoads, R. P., & Baumgard, L. H. (2009). Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. Journal of Dairy Science, 92(3), 935-942. https://doi.org/10.3168/jds.2008-1496

Sigdel, A., Abdollahi-Arpanahi, R., Aguilar, I., & Peñagaricano, F. (2019). Whole genome mapping reveals novel genes and pathways involved in milk production under heat stress in US Holstein cows. Frontiers in Genetics, 10, 928. https://doi.org/10.3389/fgene.2019.00928

Silanikove, N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67(1-2), 1-18. https://doi.org/10.1016/S0301-6226(00)00162-7

Smith, E. K., O'Neill, J., Gerson, A. R., & Wolf, B. O. (2015). Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. Journal of Experimental Biology, 218(22), 3636-3646. https://doi.org/10.1242/jeb.128645

Soetan, K. O., Olaiya, C. O., & Oyewole, O. E. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science, 4(5), 200-222.

Sordillo, L. M. (2016). Nutritional strategies to optimize dairy cattle immunity. Journal of Dairy Science, 99(6), 4967-4982. https://doi.org/10.3168/jds.2015-10354

St-Pierre, N. R., Cobanov, B., & Schnitkey, G. (2003). Economic losses from heat stress by US livestock industries. Journal of Dairy Science, 86, E52-E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5

Taniguchi, Y., Ooie, T., Takahashi, N., Shinohara, T., Nakagawa, M., Yonemochi, H., Hara, M., Yoshimatsu, H., & Saikawa, T. (2006). Pioglitazone but not glibenclamide improves cardiac expression of heat shock protein 72 and tolerance against ischemia/reperfusion injury in the heredity insulin-resistant rat. Diabetes, 55(8), 2371-2378. https://doi.org/10.2337/db06-0268

Tao, S., & Dahl, G. E. (2013). Invited review: Heat stress effects during late gestation on dry cows and their calves. Journal of Dairy Science, 96(7), 4079-4093. https://doi.org/10.3168/jds.2012-6278

Temesgen, M. Y., Assen, A. A., Gizaw, T. T., Minalu, B. A., & Mersha, A. Y. (2022). Factors affecting calving to conception interval (days open) in dairy cows located at Dessie and Kombolcha towns, Ethiopia. PloS One, 17(2), e0264029. https://doi.org/10.1371/journal.pone.0264029

Theusme, C., Avendaño-Reyes, L., Macías-Cruz, U., Castañeda-Bustos, V., García-Cueto, R., Vicente-Pérez, R., Mellado, M., Meza-Herrera, C., & Vargas-Villamil, L. (2022). Prediction of rectal temperature in Holstein heifers using infrared thermography, respiration frequency, and climatic variables. International Journal of Biometeorology, 66, 2489-2500. https://doi.org/10.1007/s00484-022-02377-0

Tucker, C., & Schütz, K. (2009). Behavioral responses to heat stress: dairy cows tell the story. Western Dairy Nutrition Conference, Tepme, AZ.

Van Soest, P. J. (2018). Nutritional ecology of the ruminant. New York, US: Cornell University Press.

Vitali, A., Segnalini, M., Bertocchi, L., Bernabucci, U., Nardone, A., & Lacetera, N. (2009). Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. Journal of Dairy Science, 92(8), 3781-3790. https://doi.org/10.3168/jds.2009-2127

Wang, B., Wang, C., Guan, R., Shi, K., Wei, Z., Liu, J., & Liu, H. (2019). Effects of dietary rumen-protected betaine supplementation on performance of postpartum dairy cows and immunity of newborn calves. Animals, 9(4), 167. https://doi.org/10.3390/ani9040167

Wankar, A. K., Rindhe, S. N., & Doijad, N. S. (2021). Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario. Tropical Animal Health and Production, 53, 70. https://doi.org/10.1007/s11250-020-02541-x

Wathes, D. C., Fenwick, M., Cheng, Z., Bourne, N., Llewellyn, S., Morris, D. G., Kenny, D., Murphy, J., & Fitzpatrick, R. (2007). Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology, 68(S1), S232-S241. https://doi.org/10.1016/j.theriogenology.2007.04.006

Wilhelm-Olany, A. R. (2019). Effects of Oral Supplementation of Potassium Chloride in Hypokalemic Dairy Cows by Use of a Bolus Formulation on Metabolism, Abomasal Position and Vaginal Discharge Characteristics. Doctoral dissertation, Free University of Berlin.

Woodroffe, R., Groom, R., & McNutt, J. W. (2017). Hot dogs: High ambient temperatures impact reproductive success in a tropical carnivore. Journal of Animal Ecology, 86(6), 1329-1338. https://doi.org/10.1111/1365-2656.12719

Wu, G. (2020). Management of metabolic disorders (including metabolic diseases) in ruminant and nonruminant animals. In Animal Agriculture (pp. 471-491). Massachusetts, United States: Academic Press. https://doi.org/10.1016/B978-0-12-817052-6.00027-6

Yadav, B., Singh, G., Verma, A. K., Dutta, N., & Sejian, V. (2013). Impact of heat stress on rumen functions. Veterinary World, 6(12), 992-996. https://doi.org/10.14202/vetworld.2013.992-996

Zamorano-Algandar, R., Sánchez-Castro, M. A., Hernández-Cordero, A. I., Enns, R. M., Speidel, S. E., Thomas, M. G., Medrano, J. F., Rincón, K., Leyva-Corona, J. C., Luna-Nevárez, G., Reyna-Granados, J. R., & Luna-Nevárez, P. (2021). Molecular marker prediction for days open and pregnancy rate in Holstein cows managed in a warm climate. Livestock Science, 250, 104536. https://doi.org/10.1016/j.livsci.2021.104536

Zeng, L., Chen, N., Ning, Q., Yao, Y., Chen, H., Dang, R., & Lei, C. (2018). PRLH and SOD 1 gene variations associated with heat tolerance in Chinese cattle. Animal Genetics, 49(5), 447-451. https://doi.org/10.1111/age.12702

Zigo, F., Vasil', M., Ondrašovičová, S., Výrostková, J., Bujok, J., & Pecka-Kielb, E. (2021). Maintaining optimal mammary gland health and prevention of mastitis. Frontiers in Veterinary Science, 8, 607311. https://doi.org/10.3389/fvets.2021.607311

Published

24-06-2023

Issue

Section

Articles