Carbon balance in Maize (Zea mays L.) with various combinations of organic and inorganic fertilizers

Authors

  • Jauhari Syamsiyah Department of Soil Science, Faculty of Agriculture, Sebelas Maret University, Surakarta, Central Java, Indonesia
  • Ganjar Herdiansyah Department of Soil Science, Faculty of Agriculture, Sebelas Maret University, Surakarta, Central Java, Indonesia
  • Lidya Zaela Wijaya Undergraduate Program, Soil Science, Faculty of Agriculture, Sebelas Maret University, Surakarta, Central Java, Indonesia
  • Suntoro Department of Soil Science, Faculty of Agriculture, Sebelas Maret University, Surakarta, Central Java, Indonesia
  • Sri Hartati Department of Soil Science, Faculty of Agriculture, Sebelas Maret University, Surakarta, Central Java, Indonesia

DOI:

https://doi.org/10.25081/jaa.2024.v10.9109

Keywords:

Carbon Sequestration, CO2 Emissions, soil C-Stock

Abstract

Fertilization in agricultural cultivation has an important role in the carbon cycle. This study aims to evaluate using organic fertilizers with inorganic fertilizers that can produce high carbon sequestration with low CO2 emission levels in maize (Zea mays L.) cultivation. There were seven combinations of NPK and organic fertilizers, namely ¼ NPK + 1 OF (C), ½ NPK + 1 OF (D), ¾ NPK + 1 OF (E), 1 NPK + 1 OF (F), ¾ NPK + ¼ OF (G), ¾ NPK + ½ OF (H), ¾ NPK + ¾ OF (I), and two controls, namely no fertilizer (A) and standard NPK (350 kg/ha, SP36 150 kg/ha, KCl 75 kg/ha) (B). Organic fertilizer was applied one week before planting, SP-36 and KCl fertilizer at planting, and urea fertilizer at 0, 14, and 28 HST. Maize was planted with a spacing of 20 x 70 cm. Parameters observed included CO2 emissions, soil pH, C-Organic, C-microbial, and plant growth parameters. The combined use of NPK and organic fertilizer significantly increased soil carbon stocks (33.25-64.04 Mg/ha) and carbon sequestration by plants (3.76-5.98 Mg/ha). Therefore, using organic and inorganic fertilizer can be considered more environmentally friendly and effective in managing carbon balance on farmland and has great potential to contribute to climate change mitigation through increased soil and plant carbon sequestration.

Downloads

Download data is not yet available.

References

Abera, W., Tamene, L., Abegaz, A., Hailu, H., Piikki, K., Söderström, M., Girvetz, E., & Sommer, R. (2021). Estimating spatially distributed SOC sequestration potentials of sustainable land management practices in Ethiopia. Journal of Environmental Management, 286, 112191. https://doi.org/10.1016/j.jenvman.2021.112191

Al-Ghussain, L. (2019). Global warming: review on driving forces and mitigation. Environmental Progress and Sustainable Energy, 38(1), 13-21. https://doi.org/10.1002/ep.13041

Attia, H., Rebah, F., Ouhibi, C., Saleh, M. A., Althobaiti, A. T., Alamer, K. H., Nasri, M. B., & Lachaâl, M. (2022). Effect of Potassium Deficiency on Physiological Responses and Anatomical Structure of Basil, Ocimum basilicum L. Biology, 11(11), 1-14. https://doi.org/10.3390/biology11111557

Baharuddin, R., & Sutriana, S. (2020). Growth and Production of Tumpangsari Chili Plants with Red Onion Through and NPK Fertilization in Peat Raisa. Dinamika Pertanian, 35(3), 73-80. https://doi.org/10.25299/dp.2019.vol35(3).4567

Béziat, P., Ceschia, E., & Dedieu, G. (2009). Carbon balance of a three crop succession over two cropland sites in South West France. Agricultural and Forest Meteorology, 149(10), 1628-1645. https://doi.org/10.1016/j.agrformet.2009.05.004

Brar, B. S., Singh, K., Dheri, G. S., & Balwinder-Kumar. (2013). Carbon sequestration and soil carbon pools in a rice-wheat cropping system: Effect of long-term use of inorganic fertilizers and organic manure. Soil and Tillage Research, 128, 30-36. https://doi.org/10.1016/j.still.2012.10.001

Chauhan, B. S., Prabhjyot-Kaur, Mahajan, G., Randhawa, R. K., Singh, H., & Kang, M. S. (2014). Global Warming and Its Possible Impact on Agriculture in India. Advances in Agronomy, 123, 65-121. https://doi.org/10.1016/B978-0-12-420225-2.00002-9

Chu, H., Hosen, Y., & Yagi, K. (2007). NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biology and Biochemistry, 39(1), 330-339. https://doi.org/10.1016/j.soilbio.2006.08.003

de Urzedo, D. I., Franco, M. P., Pitombo, L. M., & do Carmo, J. B. (2013). Effects of organic and inorganic fertilizers on greenhouse gas (GHG) emissions in tropical forestry. Forest Ecology and Management, 310, 37-44. https://doi.org/10.1016/j.foreco.2013.08.018

Dossou-Yovo, E. R., Brüggemann, N., Ampofo, E., Igue, A. M., Jesse, N., Huat, J., & Agbossou, E. K. (2016). Combining no-tillage, rice straw mulch and nitrogen fertilizer application to increase the soil carbon balance of upland rice field in northern Benin. Soil and Tillage Research, 163, 152-159. https://doi.org/10.1016/j.still.2016.05.019

Ebrahimi, M., Sarikhani, M. R., Sinegani, A. A. S., Ahmadi, A., & Keesstra, S. (2019). Estimating the soil respiration under different land uses using artificial neural network and linear regression models. Catena, 174, 371-382. https://doi.org/10.1016/j.catena.2018.11.035

Ekowati, D., & Nasir, M. (2011). The Growth of Maize Crop (Zea mays L.) BISI-2 Variety on Rejected and non Rejected Sand at Pantai Trisik Kulon Progo. Jurnal Manusia Dan Lingkungan, 18(3), 220-231.

Ferrini, F., Fini, A., Mori, J., & Gori, A. (2020). Role of vegetation as a mitigating factor in the urban context. Sustainability, 12(10), 4247. https://doi.org/10.3390/su12104247

Franzluebbers, A. J., & Veum, K. S. (2020). Comparison of two alkali trap methods for measuring the flush of CO2. Agronomy Journal, 112(2), 1279-1286. https://doi.org/10.1002/agj2.20141

Hairiah, K., & Rahayu, S. (2007). Measurement of Carbon Stored in Different Land Uses. Nairobi, Kenya: World Agroforestry Centre.

IPCC. (2006). IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme, H. S. Eggleston, K. Miwa, N. Srivastava & K. Tanabe (Eds.). Japan: IGES.

Irawan, Maswar, Yustika, R. D., & Ariani, R. (2002). Sifat Fisika Tanah dan Metode Analisisnya. Java, Indonesia: Balai Penelitian Tanah.

Jarvi, M. P., & Burton, A. J. (2020). Root respiration and biomass responses to experimental soil warming vary with root diameter and soil depth. Plant and Soil, 451, 435-446. https://doi.org/10.1007/s11104-020-04540-1

Kartikawati, R., & Nursyamsi, D. (2013). Pengaruh Pengairan, Pemupukan, Dan Penghambat Nitrifikasi Terhadap Emisi Gas Rumah Kaca Di Lahan Sawah Tanah Mineral. Ecolab, 7(2), 93-107.

Li, H., Feng, W., He, X., Zhu, P., Gao, H., Sin, N., & Xu, M. (2017). Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Journal of Integrative Agriculture, 16(4), 937-946. https://doi.org/10.1016/S2095-3119(16)61559-9

Li, L.-J., You, M.-Y., Shi, H.-A., Ding, X.-L., Qiao, Y.-F., & Han, X.-Z. (2013). Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. European Journal of Soil Biology, 55, 83-90. https://doi.org/10.1016/j.ejsobi.2012.12.009

Liang, Z., Jin, X., Zhai, P., Zhao, Y., Cai, J., Li, S., Yang, S., Li, C., & Li, C. (2022). Combination of organic fertilizer and slow-release fertilizer increases pineapple yields, agronomic efficiency and reduces greenhouse gas emissions under reduced fertilization conditions in tropical areas. Journal of Cleaner Production, 343, 131054. https://doi.org/10.1016/j.jclepro.2022.131054

Liddicoat, C., Schapel, A., Davenport, D., & Dwyer, E. (2010). Soil carbon and climate change. PIRSA Discussion Paper.

Liu, D., Liu, X., Liu, Y., Li, L., Pan, G., Crowley, D., & Tippkötter, R. (2011). Soil organic carbon (SOC) accumulation in rice paddies under long-term agro-ecosystem experiments in southern China – VI. Changes in microbial community structure and respiratory activity. Biogeosciences Discussions, 8, 1529-1554. https://doi.org/10.5194/bgd-8-1529-2011

Liu, H., Zhou, G., Bai, S. H., Song, J., Shang, Y., He, M., Wang, X., & Zheng, Z. (2019). Differential response of soil respiration to nitrogen and phosphorus addition in a highly phosphorus-limited subtropical forest, China. Forest Ecology and Management, 448, 499-508. https://doi.org/10.1016/j.foreco.2019.06.020

Machado, C. B., Lima, J. R. D. S., Antonino, A. C. D., de Souza, E. S., Souza, R. M. S., & Alves, E. M. (2016). Daily and seasonal patterns of CO2 fluxes and evapotranspiration in maize-grass intercropping. Revista Brasileira de Engenharia Agricola e Ambiental, 20(9), 777-782. https://doi.org/10.1590/1807-1929/agriambi.v20n9p777-782

Marian, E., & Tuhuteru, S. (2019). Utilization of Tofu Liquid Waste to Growth and Yield of Chicory (Brassica pekinensi). Agritrop, 17(2), 134-144. https://doi.org/10.32528/agritrop.v17i2.2663

Masryfah, T. F., Banuwa, I. S., Buchari, H., & Utomo, M. (2019). Effects of tillage system and herbicide application on aboveground carbon stored in maize (Zea mays L.) 3rd cropping season. Jurnal Agrotek Tropika, 7(3), 433-441. https://doi.org/10.23960/jat.v7i3.3547

Maswar, M., Husnain, H., & Agus, F. (2014). Effect of Manure and Chemical Fertilizers on CO2 Fluxes on Drained Peatlands. Jurnal Tanah Dan Iklim, 38(2), 71-77.

Moilanen, M., Hytönen, J., & Leppälä, M. (2012). Application of wood ash accelerates soil respiration and tree growth on drained peatland. European Journal of Soil Science, 63(4), 467-475. https://doi.org/10.1111/j.1365-2389.2012.01467.x

Nema, P., Nema, S., & Roy, P. (2012). An overview of global climate changing in current scenario and mitigation action. Renewable and Sustainable Energy Reviews, 16(4), 2329-2336. https://doi.org/10.1016/j.rser.2012.01.044

Oladele, S. O., & Adetunji, A. T. (2021). Agro-residue biochar and N fertilizer addition mitigates CO2-C emission and stabilized soil organic carbon pools in a rain-fed agricultural cropland. International Soil and Water Conservation Research, 9(1), 76-86. https://doi.org/10.1016/j.iswcr.2020.09.002

Oleńska, E., Małek, W., Wójcik, M., Swiecicka, I., Thijs, S., & Vangronsveld, J. (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 743, 140682. https://doi.org/10.1016/j.scitotenv.2020.140682

Ölinger, R., Beck, T., Heilmann, B., & Beese, F. (1996). Soil Respiration. In F. Schinner, R. Öhlinger, E. Kandeler & R. Margesin (Eds.), Methods in Soil Biology (pp. 93-110) Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-60966-4_6

Persiani, A., Diacono, M., Monteforte, A., & Montemurro, F. (2019). Agronomic performance, energy analysis, and carbon balance comparing different fertilization strategies in horticulture under Mediterranean conditions. Environmental Science and Pollution Research, 26, 19250-19260. https://doi.org/10.1007/s11356-019-05292-x

Punuindoong, S., Sinolungan, M. T. M., & Rondonuwu, J. J. (2021). Kajian Nitrogen, Fosfor, Kalium dan C-Organik Pada Tanah Berpasir Pertanaman Kelapa Desa Ranoketang Atas. Soil and Environment Journal, 1(1), 6-11.

Purakayastha, T. J., Rudrappa, L., Singh, D., Swarup, A., & Bhadraray, S. (2008). Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system. Geoderma, 144(1-2), 370-378. https://doi.org/10.1016/j.geoderma.2007.12.006

Rahayu, Syamsiyah, J., Cahyani, V. R., & Fauziah, S. K. (2019). The effects of biochar and compost on different cultivars of shallots (Allium ascalonicum L.) growth and nutrient uptake in sandy soil under saline water. Journal of Soil Science and Agroclimatology, 16(2), 216-228. https://doi.org/10.20961/STJSSA.V16I2.34209

Rasse, D. P., Rumpel, C., & Dignac, M.-F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 269, 341-356. https://doi.org/10.1007/s11104-004-0907-y

Romadhan, P., Gusmini, & Hermansah. (2022). Improvement of The Chemical Properties of the Ex-Gold Mining Land Through the Application of Organic Fertilizer Granular Biokanat. Journal of Agricultural Science, 20(1), 74-83.

Roß, C.-L., Baumecker, M., Ellmer, F., & Kautz, T. (2022). Organic Manure Increases Carbon Sequestration Far beyond the “4 per 1000 Initiative” Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2. Agriculture, 12(2), 170. https://doi.org/10.3390/agriculture12020170

Rotbart, N., Borisover, M., Bukhanovsky, N., Nasonova, A., Bar-Tal, A., & Oren, A. (2017). Examination of residual chloroform interference in the measurement of microbial biomass C by fumigation-extraction. Soil Biology and Biochemistry, 111, 60-65. https://doi.org/10.1016/j.soilbio.2017.03.018

Russell, A. E., Cambardella, C. A., Laird, D. A., Jaynes, D. B., & Meek, D. W. (2009). Nitrogen fertilizer effects on soil carbon balances in Midwestern U.S. agricultural systems. Ecological Applications, 19(5), 1102-1113. https://doi.org/10.1890/07-1919.1

Rutledge, S., Mudge, P. L., Campbell, D. I., Woodward, S. L., Goodrich, J. P., Wall, A. M., Kirschbaum, M. U. F., & Schipper, L. A. (2015). Carbon balance of an intensively grazed temperate dairy pasture over four years. Agriculture, Ecosystems & Environment, 206, 10-20. https://doi.org/10.1016/j.agee.2015.03.011

Sainju, U. M., Ghimire, R., & Dangi, S. (2021). Soil carbon dioxide and methane emissions and carbon balance with crop rotation and nitrogen fertilization. Science of the Total Environment, 775, 145902. https://doi.org/10.1016/j.scitotenv.2021.145902

Serri, F., Souri, M. K., & Rezapanah, M. (2021). Growth, biochemical quality and antioxidant capacity of coriander leaves under organic and inorganic fertilization programs. Chemical and Biological Technologies in Agriculture, 8, 33. https://doi.org/10.1186/s40538-021-00232-9

Shakoor, A., Dar, A. A., Arif, M. S., Farooq, T. H., Yasmeen, T., Shahzad, S. M., Tufail, M. A., Ahmed, W., Albasher, G., & Ashraf, M. (2022). Do soil conservation practices exceed their relevance as a countermeasure to greenhouse gases emissions and increase crop productivity in agriculture? Science of the Total Environment, 805, 150337. https://doi.org/10.1016/j.scitotenv.2021.150337

Singh, K. P., Ghoshal, N., & Singh, S. (2009). Soil carbon dioxide flux, carbon sequestration and crop productivity in a tropical dryland agroecosystem: Influence of organic inputs of varying resource quality. Applied Soil Ecology, 42(3), 243-253. https://doi.org/10.1016/j.apsoil.2009.04.005

Siringoringo, H. H. (2014). The important Roles of managing carbon sequestration in soils. Jurnal Analisis Kebijakan Kehutanan, 11(2), 175-192.

Sulaeman, Y., Maswar, & Erfandi, D. (2016). Effect of Organic and Inorganic Fertilizers Combination on Soil Productivity and Crop Yield of Maize Farming in Acid Upland Soil. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian, 20(1), 1-12.

Suwandi, Sopha, G., & Yufdy, M. (2015). The Effectiveness of Organic Fertilizer, NPK, and Biofertilizer Managements on Growth and Yields of Shallots. Jurnal Hortikultura, 25(3), 208-221.

Syamsiyah, J., Ariyanto, D. P., Herawati, A., Herdiansyah, G., & Dwisetio, P. K. (2023a). Rice paddy field on Gentungan, Karanganyar: Soil C Humic Acid, Fulvic Acid, and Stock as Affected by Period of Organic Practices. IOP Conference Series: Earth and Environmental Science, 1165, 012013. https://doi.org/10.1088/1755-1315/1165/1/012013

Syamsiyah, J., Ariyanto, D. P., Komariah, Herawati, A., Dwisetio, P. K., Sari, S. I., Salsabila, H. A., Herdiansyah, G., Hartati, S., & Mujiyo. (2023b). Temporal variation in the soil properties and rice yield of organic rice farming in the tropical monsoon region, Indonesia. Journal of Soil Science and Agroclimatology, 20(2), 231-239. https://doi.org/10.20961/stjssa.v20i2.71431

Syamsiyah, J., Minardi, S., Herdiansyah, G., Cahyono, O., & Mentari, F. C. (2023c). Physical Properties of Alfisols, Growth and Products of Hybrid Corn Affected by Organic and Inorganic Fertilizer. Journal of Sustainable Agriculture, 38(1), 99-112. https://doi.org/10.20961/carakatani.v38i1.65014

Syamsiyah, J., Minardi, S., Khadaffi, J., Hartati, S., & Herdiansyah, G. (2023d). Partial substitution inorganic using organic fertilizers on soil N, P, K and corn yield on inceptisols. Jurnal AGRO, 10(2), 242-251. https://doi.org/10.15575/27875

Syamsiyah, J., Rahayu, R., & Binafsihi, W. (2020). Soil properties and shallot yield responses to different salinity levels. Journal of Soil Science and Agroclimatology, 17(1), 30-34. https://doi.org/10.20961/stjssa.v17i1.41566

Syamsiyah, J., Sunarminto, B. H., Hanudin, E., Widada, J., & Mujiyo. (2019). Carbon dioxide emission and carbon sequestration potential in Alfisol. Bulgarian Journal of Agricultural Science, 25(1), 42-48.

Wang, J., Xie, J., Li, L., Effah, Z., Xie, L., Luo, Z., Zhou, Y., & Jiang, Y. (2022). Fertilization treatments affect soil CO2 emission through regulating soil bacterial community composition in the semiarid Loess Plateau. Scientific Reports, 12(1), 1-11. https://doi.org/10.1038/s41598-022-21108-4

Wang, Y., Hu, C., Dong, W., Li, X., Zhang, Y., Qin, S., & Oenema, O. (2015). Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China plain. Agriculture, Ecosystems and Environment, 206, 33-45. https://doi.org/10.1016/j.agee.2015.03.016

Wu, W., Ma, X., Zhang, Y., Li, W., & Wang, Y. (2020). A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries. Science of the Total Environment, 707, 135447. https://doi.org/10.1016/j.scitotenv.2019.135447

Xia, L., Lam, S. K., Yan, X., & Chen, D. (2017). How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environmental Science and Technology, 51(13), 7450-7457. https://doi.org/10.1021/acs.est.6b06470

Xu, M., & Qi, Y. (2001). Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7(6), 667-677. https://doi.org/10.1046/j.1354-1013.2001.00435.x

Xu, S., Sheng, C., & Tian, C. (2020). Changing soil carbon: Influencing factors, sequestration strategy and research direction. Carbon Balance and Management, 15(1), 1-9. https://doi.org/10.1186/s13021-020-0137-5

Yuan, J., Sha, Z, Hassani, D., Zhao, Z., & Cao, L. (2017). Assessing environmental impacts of organic and inorganic fertilizer on daily and seasonal Greenhouse Gases effluxes in rice field. Atmospheric Environment, 155, 119-128. https://doi.org/10.1016/j.atmosenv.2017.02.007

Zhang, C., Zhao, Z., Li, F., & Zhang, J. (2022). Effects of Organic and Inorganic Fertilization on Soil Organic Carbon and Enzymatic Activities. Agronomy, 12(12), 3125. https://doi.org/10.3390/agronomy12123125

Zhang, J., Li, Q., Wu, J., & Song, X. (2019). Effects of nitrogen deposition and biochar amendment on soil respiration in a Torreya grandis orchard. Geoderma, 355, 113918. https://doi.org/10.1016/j.geoderma.2019.113918

Zhang, L., Zhuang, Q., He, Y., Liu, Y., Yu, D., Zhao, Q., Shi, X., Xing, S., & Wang, G. (2016). Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China. Geoderma, 275, 28-39. https://doi.org/10.1016/j.geoderma.2016.04.001

Zulkarnain, M., Prasetya, B., & Soemarno. (2013). Pengaruh kompos, pupuk kandang, dan custom-bio terhadap sifat tanah , pertumbuhan dan hasil tebu (Saccharum officinarum L.) pada entisol di kebun ngrangkah-pawon, kediri). Indonesian Green Technology Journal, 2(1), 45-52.

Zuo, W., Gu, B., Zou, X., Peng, K., Shan, Y., Yi, S., Shan, Y., Gu, C., & Bai, Y. (2023). Soil organic carbon sequestration in croplands can make remarkable contributions to China ’ s carbon neutrality. Journal of Cleaner Production, 382, 135268. https://doi.org/10.1016/j.jclepro.2022.135268

Published

07-09-2024

How to Cite

Syamsiyah, J., Herdiansyah, G., Wijaya, L. Z., Suntoro, & Hartati, S. (2024). Carbon balance in Maize (Zea mays L.) with various combinations of organic and inorganic fertilizers. Journal of Aridland Agriculture, 10, 120–126. https://doi.org/10.25081/jaa.2024.v10.9109

Issue

Section

Articles