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INTRODUCTION

Rising temperatures due to global warming have led to a 
decline in production on agricultural land (Chauhan et al., 
2014). A nearly fifty percent increase in the concentration of 
carbon dioxide (CO2) in the atmosphere, from 280  ppm in 
1750 to 414.7 ppm in May 2019 (Nema et al., 2012; Wu et al., 
2020), often considered to be a significant contributor to global 
warming and climate change (Li et al., 2013; Al-Ghussain, 
2019). One of the causes of increased carbon dioxide (CO2) 
concentrations is agricultural activities such as tillage and 
fertilization.

Fertilization using inorganic fertilizers has contributed to 
increasing CO2, this is one of the triggers for global warming 
in the agricultural sector, as is the use of organic fertilizers. 
Inorganic fertilizers can contribute to CO2 emissions through 
increased root respiration (Chu et al., 2007). At the same 
time, it can also increase the absorption of CO2 by the leaves 
through photosynthesis (Kartikawati & Nursyamsi, 2013). Using 

organic fertilizers can also contribute to CO2 emissions from 
mineralization and microbial activity (Maswar et al., 2014). 
However, the use of organic fertilizer has other advantages, 
namely organic fertilizers can increase soil nutrient availability, 
microbial activity, and microbial diversity (Yuan et al., 2017), 
and increase soil C-Stock (Zuo et al., 2023). Although the use 
of organic fertilizer can increase CO2 emissions, on the other 
hand, it can also reduce CO2 emissions by increasing C-stock. 
Various studies on CO2 emissions and C sequestration have been 
conducted, such as CO2 emissions in pineapple cultivation in 
the tropics (Liang et al., 2022), the cultivation of wheat, rice, 
and maize (Shakoor et al., 2022), in rice-wheat rotation (Zhang 
et al., 2016), and onion plants (Suwandi et al., 2015).

The increase in the amount of CO2 must be controlled 
by increasing the amount of CO2 absorbed by plants and 
suppressing the emission of CO2 back into the air (Ferrini et al., 
2020). Thus, it is crucial to quantify the variability of carbon 
stocks and fluxes through on-farm carbon balance (Béziat et al., 
2009; Wang et al., 2015). However, most previous research on 
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carbon balance has focused on forest and grassland ecosystems 
and only a tiny proportion of agricultural land (Machado et al., 
2016). The use of organic fertilizer is the main choice in efforts 
to reduce CO2 emissions. Several previous studies have reported 
that the use of organic amendments can produce the highest 
carbon balance in horticultural crops (Persiani et al., 2019), 
upland rice (Dossou-Yovo et al., 2016), and wheat crops (Roß 
et al., 2022). In practice, the use of organic fertilizer affects the 
availability of nutrients in the soil because it is slow-release. 
In fact, plants need nutrients for growth, so the addition of 
inorganic fertilizer is still needed. The use of inorganic fertilizers 
is related to carbon absorption. According to (Rasse et al., 2005; 
Russell et al., 2009) increasing the nitrogen fertilization dose 
is also recommended to increase soil carbon sequestration due 
to increased aboveground biomass. However, the increased 
carbon uptake resulting from increased nitrogen fertilization 
may be offset by high CO2 emissions to the atmosphere (Liu 
et al., 2019). More effective efforts are needed to reduce CO2 
emissions, one of which is by integrating organic and inorganic 
fertilizers. Based on these data, it appears that different 
fertilization patterns have other impacts on carbon balance. 
However, there is little information on the integrated assessment 
of the effects of organic and inorganic fertilizer balances on soil 
C balance processes. This study aims to evaluating the use of 
organic fertilizers with inorganic fertilizers that can produce 
high carbon sequestration with low CO2 emission levels in maize 
(Z. mays L.) cultivation.

MATERIALS AND METHODS

The research was conducted in Klaten, Central Java (7°63’70.053” 
LS 110°70’04.27” East) from August 2021 to March 2022 on 
Inceptisol soil with the characteristics presented in Table  2. 
This field experiment used a randomized complete block design 
(RCBD) consisting of 7 treatments of NPK and organic fertilizer 
combinations, namely ¼ NPK + 1 organic fertilizer (C), ½ 
NPK + 1 organic fertilizer (D), ¾ NPK + 1 organic fertilizer 
(E), 1 NPK + 1 organic fertilizer (F), ¾ NPK + ¼ organic 
fertilizer (G), ¾ NPK + ½ organic fertilizer (H), ¾ NPK + ¾ 
organic fertilizer (I) and two control treatments consisting of 
no fertilizer (A) and standard NPK (350 kg/ha, SP36 150 kg/ha, 
KCl 75 kg/ha) (B) (Table 1). Crumb organic fertilizer with the 
properties in Table  3 was applied one week before planting, 
SP-36, and KCl fertilizers at planting while urea fertilizer at 0, 
14, and 28 DAP. The experimental plot size was 20 m2 (4 m x 
5 m) with a planting distance of 20 cm x 70 cm. Maintenance 
was carried out as usual by farmers.

CO2 emissions were measured three times at 35, 49, and 63 HST 
with a modified Alkali Trap method (Figure 1) (Franzluebbers 
& Veum, 2020). Measurements were taken in the morning to 
minimize daily variations and obtain representative daily average 
soil CO2 emissions (Xu & Qi, 2001). Samples of disturbed soil 
were taken at a depth of 0-20 cm to measure various parameters, 
including soil pH (potentiometry), which was measured three 
times along with emission sampling (Oladele & Adetunji, 2021), 
C-Organic (Walkey and Black) (Romadhan et al., 2022), and 
C-microbe (Fumigation and Extraction) (Rotbart et al., 2017), 

while Bulk density is measured using undisturbed soil samples 
taken with a sampling ring (Gravimetric method) (Irawan et al., 
2022). Dry plant biomass was calculated using two plant samples 
in each plot (Gravimetric Method) (Ekowati & Nasir, 2011).

Soil CO2 emissions are calculated using the equation:

Soil CO2 emissions ( 2

mg
m

) = (𝐶 – S) 𝑥 𝑁 𝑥 𝐸 (Ölinger et al., 
1996)� (1)

The formula calculates soil C-stock:

SOC Stock (Mg C ha−1) = [SOC %] x BD 0-20 cm (g/cm3) x 
D (0,2 m) (Li et al., 2017; Abera et al., 2021)� (2)

The amount of carbon in plant biomass is calculated using the 
following formula:

C = Biomassa x % C Biomassa (IPCC, 2006)� (3)

Carbon balance is calculated using the formula:

Carbon balance: C soil input - C soil output (Singh et al., 2009; 
Sainju et al., 2021)� (4)

The research data were analyzed using Analysis of Variance 
(Anova) with a confidence level of 95%. If the results of 
Anova achieved are significantly different, it is continued 
with Duncan’s Multiple Range Test (DMRT) to determine 
differences between treatment means and Pearson -elation test 
to see the relationship between variables.

RESULTS AND DISCUSSION

Soil CO2 emission is the release of CO2 from root respiration, 
soil microbes, and fauna in the subsoil through biological 
processes by converting organic carbon into CO2 (Ebrahimi 
et al., 2019). CO2 emissions were significantly affected by 
organic and inorganic fertilizers (p=0.000). The average CO2 
emissions produced ranged from 1.92-6.16 mg CO2/m

2/week 
and increased with increasing doses of organic fertilizer. This 
result is consistent with Liu et al. (2011) that the balanced 
application of organic and inorganic fertilizers resulted in higher 
CO2 emissions than NPK-only and no-fertilizer treatments 
due to increased microbial activity from organic amendments. 
Organic fertilizers applied can increase soil C (Zulkarnain et al., 
2013; Syamsiyah et al., 2023a, b) and will supply nutrients 
for microorganisms as well as stimulate heterotrophic soil 
respiration and CO2 emission (Wang et al., 2022). This can 
be seen in the positive correlation between CO2 emissions 
and soil organic C (r=0.834**) and C-microbe (r=0.527**). 
The same thing was also stated by De Urzedo et al. (2013) 
and Syamsiyah et al. (2019) that CO2 emissions on farmland 
increase after organic fertilizer application due to the rise in the 
supply of labile C to soil microorganisms, thereby increasing 
the activity of microorganisms and resulting in an increase in 
soil CO2 emissions.
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On the other hand, the application of inorganic fertilizers results 
in high plant growth (Rahayu et al., 2019; Baharuddin & Sutriana, 
2020), including plant roots (Serri et al., 2021; Syamsiyah et 
al., 2023c), so that root respiration increases and causes CO2 
emissions, this can be seen in the correlation between CO2 
emissions and root biomass (r=0.330*) (Figure 2). These results 
align with research by Oladele and Adetunji (2021) that applying 

Table 1: Experimental treatment design
S. No. Treatment Organic 

Fertilizer 
(kg/h)

NPK fertilizer 
(kg/h)

Urea SP36 KCl

1 No fertilizer 0 0 0 0
2 Standard NPK 0 350 150 75
3 ¼ NPK+1 Organic Fertilizer 10000 87.5 37.5 18.75
4 ½ NPK+1 Organic Fertilizer 10000 175 75 37.5
5 ¾ NPK+1 Organic Fertilizer 10000 262.5 112.5 56.25
6 1 NPK+1 Organic Fertilizer 10000 350 150 75
7 ¾ NPK + ¼ Organic Fertilizer 2500 262.5 112.5 56.25
8 ¾ NPK + ½ Organic Fertilizer 5000 262.5 112.5 56.25
9 ¾ NPK + ¾ Organic Fertilizer 7500 262.5 112.5 56.25

Table 2: Characteristics of Inceptisol Soil at the Research Site
S. No. Parameter Value Unit Rating*

1 N‑total 0.28 % Medium
2 P‑available 1.17 ppm Very Low
3 K‑available 0.46 (me/100 g) Medium
4 C‑Organic 1.55 % Low
5 pH 6.5 ‑ Somewhat Acidic (5.5‑6.5)
6 BV 0.92 (g/cm3) Medium

Source: Primary data. *Based on the scoring of the Indonesian Soil 
Research Institute (2023)

Table 3: Analytical results of solid organic fertilizer
S. No. Parameter Value

1 Moisture Content (%) 20.08%
2 N‑total (%) 1.32%
3 P2O5 (%) 2.62%
4 K2O (%) 1.38%
5 pH 7.69
6 C‑Organic (%) 22.51%
7 C/N 17.05

Table 4: Average CO2 emission values at various organic and 
inorganic fertilizer balances. The highest CO2 emission values 
were dominated by the balance treatment with high organic 
fertilizer doses
Treatment Soil CO2 emission  

(mg CO2/m2/week)

No fertilizer 1.92c

Standard NPK 4.73b

¼ NPK+1 Organic Fertilizer 5.62a

½ NPK+1 Organic Fertilizer 5.74a

¾ NPK+1 Organic Fertilizer 5.80a

1 NPK+1 Organic Fertilizer 6.16a

¾ NPK + ¼ Organic Fertilizer 4.19b

¾ NPK + ½ Organic Fertilizer 4.72b

¾ NPK + ¾ Organic Fertilizer 5,81a

Different lowercase letters in rows and columns indicate significant 
differences at 5% DMRT

Table 5: Correlation between CO2 emissions and soil properties
RB pH SOC C‑mic

Soil CO2 emission 0.330* 0.568** 0.834** 0.527**

RB=Root Biomass, SOC=Soil Organic Carbon, C‑mic=C‑microba, * 
and ** indicate significance at p<0.05 and p<0.01, respectively

Table 6: Average soil C‑stock values at different organic and 
inorganic fertilizer rates. Soil C‑stock was lower in the treatment 
without organic fertilizer addition
Treatment Soil C‑Stock 

(Mg/ha)

No fertilizer 28.55d

Standard NPK 32.53d

¼ NPK+1 Organic Fertilizer 50.25c

½ NPK+1 Organic Fertilizer 58.61ab

¾ NPK+1 Organic Fertilizer 59.13ab

1 NPK+1 Organic Fertilizer 64.04a

¾ NPK + ¼ Organic Fertilizer 33.25d

¾ NPK + ½ Organic Fertilizer 50.78c

¾ NPK + ¾ Organic Fertilizer 53.51bc

Different lowercase letters in rows and columns indicate significant 
differences at 5% DMRT

Figure 2: Relationship pattern of CO2 emission and root biomass in 
various treatments. Bars and lines represent means (n=9) and the same 
letter appearing on bars and lines throughout the figure indicates no 
significant difference (according to DMRT test) (Description: Statistical 
analysis).

Figure  1: Schematic of alkali trap installation (Modified alkali trap 
(Singh et al., 2009))
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high N fertilizer can increase plant growth and root biomass, 
which affects the level of plant root respiration. Root respiration 
at the ecosystem level is the result of multiplying specific root 
respiration and root biomass. In other words, the total CO2 
released through root respiration in the ecosystem is directly 
related to the total amount of root mass in the soil. An increase 
in root biomass leads to more metabolically active root tissues, 
thus producing more CO2 (Jarvi & Burton, 2020). Conversely, a 
decrease in root biomass will reduce total root respiration due 
to less root tissue involved in the process. CO2 emissions were 

also influenced by an increase in soil pH (r=0.568**) (Table 5), 
low soil pH can inhibit soil microbial activity. Soil acidity can 
be reduced by applying soil amendments, where these soil 
amendments can not only increase soil pH but also play a role in 
increasing microbial activity which has an impact on increasing 
heterotrophic respiration and ultimately contributes to increasing 
soil respiration (Zhang et al., 2019). Soil pH can increase cellulose 
decomposition by almost twofold due to increased soil microbial 
activity, leading to more excellent emission release (Moilanen et 
al., 2012). The combination of ½ NPK and 1 organic fertilizer 
(10 tons/ha) produced lower CO2 emissions than 1 NPK and 1 
organic fertilizer, although not significantly different, but higher 
than no fertilizer and standard NPK (Table 4). This is thought to 
be related to root weight, where this treatment has the highest 
root weight compared to other treatments.

Efforts to increase carbon storage in soil can reduce CO2 levels 
in the atmosphere. The results showed that soil C-Stock content 
was significantly influenced by organic fertilizer and inorganic 
fertilizer (p=0.000). In the treatment given organic fertilizer 
input, the soil C-Stock value was higher due to the supply of 
organic matter (Table 6). This result is consistent with Zhang 
et al. (2022) that the simultaneous application of mineral and 
organic fertilizers can increase soil C-Organic.

The balance of ½ NPK and 1 organic fertilizer produced soil 
C-Stock that was not significantly different from 1 NPK and 
1 organic fertilizer and higher than no fertilizer and standard 
NPK (Table 6). These results align with Brar et al. (2013) that 
the application of a combination of organic and inorganic 
fertilizers with a proportion of 100% NPK + FYM (farmyard 
manure) significantly increased soil carbon sequestration and 
was able to increase soil organic carbon content up to 88%. 
Zuo et al. (2023) state that carbon inputs in crop residues and 
manure are essential in soil organic carbon sequestration, which 
can directly increase soil C-Stock. Applying organic fertilizers 
to replace synthetic N fertilizers (with equivalent N levels) can 
significantly increase annual SOC sequestration by about 700 kg 
C ha-1 year-1 in upland soils (Xia et al., 2017).

CO2 emission levels can be reduced by increasing the amount 
of CO2 sequestration by plants. In this study, plant carbon 

Table 7: The average value of plant carbon sequestration in various combinations of organic and inorganic fertilizers. The highest 
carbon sequestration value was achieved in the balanced treatment with high addition of organic fertilizer
Treatment Plant Biomass Weight (Kg) Plant Biomass C Content (%) Plant Biomass C Sequestration (Mg/ha)* Plant Carbon 

Sequestration 
(Mg/ha)

Stem Leaf Root Stem Leaf Root Stem Leaf Root

No fertilizer 0.063 0.023 0.083 43.31 4.89 2.83 1.92 0.08 0.16 2.17d

Standard NPK 0.087 0.040 0.110 52.15 6.06 4.90 3.09 0.17 0.38 3.65c

¼ NPK+1 OF 0.120 0.039 0.120 55.01 6.53 5.89 4.78 0.18 0.48 5.44ab

½ NPK+1 OF 0.120 0.040 0.130 58.31 6.19 5.76 4.97 0.18 0.55 5.69a

¾ NPK+1 OF 0.123 0.039 0.100 56.16 6.27 5.60 4.94 0.18 0.40 5.51a

1 NPK+1 OF 0.120 0.043 0.100 61.74 6.74 6.13 5.33 0.21 0.45 5.98a

¾ NPK + ¼ OF 0.083 0.033 0.110 52.18 6.19 5.71 3.14 0.15 0.47 3.76c

¾ NPK + ½ OF 0.110 0.037 0.087 54.24 6.50 5.70 4.25 0.17 0.35 4.77b

¾ NPK + ¾ OF 0.123 0.041 0.100 53.53 6.46 6.15 4.66 0.19 0.44 5.29ab

Average C Sequestration of Plants (Mg/ha) 4.69

Different lowercase letters in rows and columns indicate significant differences at 5% DMRT. *Biomass C sequestration=Biomass weight x C biomass %

Table 9: Average values of plant growth at various balances of 
organic and inorganic fertilizers
Treatment Plant Growth

Plant 
Height 
(cm)

Number of 
Leaves (blades)

Stem Diameter 
(mm)

No fertilizer 151c 12c 2.99c

Standard NPK 180b 14ab 3.72ab

¼ NPK+1 Organic Fertilizer 183ab 13bc 3.94ab

½ NPK+1 Organic Fertilizer 194ab 14ab 3.99ab

¾ NPK+1 Organic Fertilizer 200a 15ab 4.10ab

1 NPK+1 Organic Fertilizer 202a 15a 4.16a

¾ NPK + ¼ Organic Fertilizer 198ab 13bc 3.97ab

¾ NPK + ½ Organic Fertilizer 191ab 13bc 3.90ab

¾ NPK + ¾ Organic Fertilizer 191ab 13bc 3.64b

Different lowercase letters in rows and columns indicate significant 
differences at 5% DMRT

Table 8: The average value of N, P, and K nutrient uptake in 
various combinations of organic and inorganic fertilizers
Treatment Nutrient Uptake 

N (g/plant) P (g/plant) K (g/plant)

No fertilizer 1.27f 0.28h 0.86e

Standard NPK 3.17de 0.76fg 2.03cd

¼ NPK+1 Organic Fertilizer 2.91e 0.98cd 2.39ab

½ NPK+1 Organic Fertilizer 3.43cd 1.11ab 2.54a

¾ NPK+1 Organic Fertilizer 4.03ab 1.07bc 2.31abc

1 NPK+1 Organic Fertilizer 4.38a 1.22a 2.59a

¾ NPK + ¼ Organic Fertilizer 3.31d 0.68g 1.91d

¾ NPK + ½ Organic Fertilizer 3.73bc 0.83ef 2.15bcd

¾ NPK + ¾ Organic Fertilizer 4.13a 0.94de 2.37abc

Different lowercase letters in rows and columns indicate significant 
differences at 5% DMRT
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sequestration was significantly affected by organic fertilizer 
and inorganic fertilizer (p=0.000). This can be caused by an 
increase in soil fertility conditions due to an increase in organic 
carbon levels in the soil, where organic carbon levels act as a 
source of nutrients (Hairiah & Rahayu, 2007; Masryfah et al., 
2019; Punuindoong et al., 2021) which affects plant growth 
(Purakayastha et al., 2008). Plant carbon sequestration in 
various treatments ranged from 2.10-5.98 Mg/ha (Table 7). The 
experimental results showed that the treatment of ½ NPK and 
1 organic fertilizer resulted in carbon sequestration, which was 
not significantly different from 1 NPK and 1 organic fertilizer 
and higher than no fertilizer and standard NPK. These results 
align with Sulaeman et al. (2016) that the input of organic 
fertilizer plus NPK fertilizer at a dose of 50 and 75% of the 
recommended dose can produce an increase in plant growth 
manifested in total biomass production and significantly 
increase carbon sequestration in biomass compared to the use 
of organic fertilizer alone. This can be seen in the correlation 
between total plant biomass and plant height (r=0.612**), 
number of leaves (r=0.423*), and stem diameter (r=0.548**).

The balance also achieved higher plant uptake of N, P, and 
K nutrients compared to no fertilizer and standard NPK 
(Table 8). The reduction of inorganic fertilizers balanced with 
organic fertilizers can increase the value of N-total, P-available, 
K-available in the soil so as to increase the uptake of N, P, and 
K nutrients in plant tissues (Table 9) (Syamsiyah et al., 2023d), 
followed by increased plant growth where the element that plays 
the most role in increasing plant growth, especially plant height, 
is nitrogen nutrients (r=0.816**) (Syamsiyah et al., 2020). Maize 
plants need nitrogen nutrients both in the vegetative growth 
phase and the generative phase. Nitrogen is a constituent in the 
hormone auxin, a plant growth hormone (Oleńska et al., 2020). 
Plant physiological processes will produce height and width in 
plants, affecting the number of leaves (r=0.582**) (Marian 
& Tuhuteru, 2019). In addition, the results showed a positive 
correlation between stem diameter and potassium levels in plant 
tissue (r=0.721**). Potassium is an essential element that plays a 
vital role in increasing stem diameter due to its role in increasing 
the level of sclerenchyma in the stem, which provides thickening 
and strength to the stem tissue (Attia et al., 2022). This also 
explains why the balanced treatment of organic and inorganic 
fertilizers in this study had higher plant C sequestration results 
than the treatment without fertilizer and standard NPK.

Carbon balance is calculated using all carbon inputs and 
outputs (Rutledge et al., 2015). The soil’s supply or carbon 
input can be achieved from photosynthesis and other organic 
matter from outside. Carbon output can be affected by the 
decomposition process due to the conversion of soil carbon 
into CO2 (Liddicoat et al., 2010). In this study, organic and 
inorganic fertilizers significantly affected the carbon balance 
(p=0.000). The average carbon balance of all treatments ranged 
from 30717.52-71143.49 Kg/ha (Table 10). The combination of 
½ NPK and 1 organic fertilizer (10 tons/ha) produced a lower 
carbon balance than 1 NPK and 1 organic fertilizer, although 
not significantly different, but higher than no fertilizer and 
standard NPK (Table  10). The carbon balance results show 
that applying organic fertilizer causes higher CO2 storage than 
CO2 released. Fertile soil conditions accompanied by high plant 
productivity allow carbon input through photosynthesis to 
exceed the amount of carbon lost (Siringoringo, 2014; Persiani 
et al., 2019). These results align with Xu et al. (2020) that tillage 
practices that can increase carbon inputs, such as applying 
organic fertilizers, are highly recommended because of their 
high efficiency in supporting soil carbon sequestration processes.

CONCLUSIONS AND SUGGESTION

The use of a fertilizer combination of NPK and organic fertilizers 
significantly increased soil carbon stocks (33.25-64.04 Mg/ha) 
and carbon sequestration (3.76-5.98 Mg/ha). The integration 
of organic fertilizers with inorganic fertilizers has proven to be 
effective in increasing C sequestration, reducing production 
costs, and increasing agricultural productivity. Thus, the use of 
organic fertilizers in agricultural systems is essential to improve 
fertilizer use efficiency, maintain carbon balance, and reduce 
negative impacts on the environment.
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Table 10: The average value of plant carbon balance in various combinations of organic and inorganic fertilizers
Treatment C‑ INPUT C‑ OUTPUT Carbon 

balance  
(Kg/ha)

Plant Biomass C Sequestration (Kg/ha) Soil C‑Stock (Kg/ha) C‑input of fertilizer (Kg/ha) CO2‑C flux (Kg/ha)

Stem Leaf Root

No fertilizer 1918.06 81.67 163.61 28554.41 0.00 0.22 30717.52d

Standard NPK 3089.67 172.08 386.21 32529.23 0.00 0.54 36176.64d

¼ NPK+1 OF 4781.78 182.05 477.65 50252.25 1125.50 0.64 56818.58c

½ NPK+1 OF 4970.47 175.40 547.65 55648.14 1125.50 0.66 65425.43ab

¾ NPK+1 OF 4935.23 175.85 397.37 59131.79 1125.50 0.66 65765.08ab

1 NPK+1 OF 5329.69 206.37 446.69 64035.94 1125.50 0.70 71143.49a

¾ NPK + ¼ OF 3138.83 145.25 472.36 33246.12 281.38 0.48 37283.46d

¾ NPK + ½ OF 4245.59 172.31 350.58 50783.75 562.75 0.54 56114.44c

¾ NPK + ¾ OF 4661.83 188.07 437.63 53505.93 844.13 0.66 59636.92bc

Different lowercase letters in rows and columns indicate significant differences at 5% DMRT
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