Regulation of cell proliferation and tumor suppressor roles of microRNA 329-3p of the MAP kinase pathway in cervical squamous carcinoma
DOI:
https://doi.org/10.25081/rrst.2024.16.8922Keywords:
Cervical cancer, Squamous cell carcinoma, Biomarker, Proliferation, Metastasis, ApoptosisAbstract
Cervical squamous cell carcinoma is observed as the second major cause of mortality worldwide. A highly conserved mitogen-activated protein kinase (MAPK) signaling pathway occurs in a wide range of cellular processes which includes differentiation, proliferation, migration, senescence, and apoptosis. MAPK pathway can be activated by various extracellular signals, capable of generating responses as per the cell type. Thus, alteration of the EGFR receptor in this particular pathway leads to the condition of cancer due to abnormal activation of receptor tyrosine kinases. The characteristic features of microRNA (miRNA) which are endogenous, single-stranded, small non-coding RNA for their role in RNA silencing and post-transitional regulation of gene expression have been studied over the years. The miRNA functions by base pairing with the complementary sequences within the mRNA molecule. One such miRNA, miR-329-3p has a critical tumor suppressor role in the MAPK pathway, however, is least understood. Therefore, miRNA could be considered as a potential biomarker for diagnosis, prognosis, and therapeutic purposes and brought out to its fullest use to mankind.
Downloads
References
Abbott, A. L., Alvarez-Saavedra, E., Miska, E. A., Lau, N. C., Bartel, D. P., Horvitz, H. R., & Ambros, V. (2005). The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Developmental Cell, 9(3), 403-414. https://doi.org/10.1016/j.devcel.2005.07.009
Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E., & Tollervey, D. (1999). Functions of the exosome in rRNA, snoRNA and snRNA synthesis. The EMBO Journal, 18, 5399-5410. https://doi.org/10.1093/emboj/18.19.5399
Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350-355. https://doi.org/10.1038/nature02871
Anand, P., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B., & Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25, 2097-2116. https://doi.org/10.1007/s11095-008-9661-9
Aravin, A., & Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 579(26), 5830-5840. https://doi.org/10.1016/j.febslet.2005.08.009
Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215-233. https://doi.org/10.1016/j.cell.2009.01.002
Bartel, D. P. (2014). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
Basoya, S., & Anjankar, A. (2022). Cervical cancer: early detection and prevention in reproductive age group. Cureus, 14(11), e31312. https://doi.org/10.7759/cureus.31312
Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Meiri, E., Sharon, E., Spector, Y., & Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37, 766-770. https://doi.org/10.1038/ng1590
Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2008). The microRNA.org resource: targets and expression. Nucleic Acids Research, 36(S1), D149-D153. https://doi.org/10.1093/nar/gkm995
Bhatla, N., Aoki, D., Sharma, D. N., & Sankaranarayanan, R. (2018). Cancer of the cervix uteri. International Journal of Gynecology & Obstetrics, 143(S2), 22-36. https://doi.org/10.1002/ijgo.12611
Boguski, M. S., & McCormick, F. (1993). Proteins regulating Ras and its relatives. Nature, 366, 643-654. https://doi.org/10.1038/366643a0
Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radzlejewska, E., Morgenbesser, S. D., DePinho, R. A., Panayotatos, N., Cobb, M. H., & Yancopoulos, G. D. (1991). ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell, 65(4), 663-675. https://doi.org/10.1016/0092-8674(91)90098-J
Bowden, S. J., Doulgeraki, T., Bouras, E., Markozannes, G., Athanasiou, A., Grout-Smith, H., Kechagias, K. S., Ellis, L. B., Zuber, V., Chadeau-Hyam, M., Flanagan, J. M., Tsilidis, K. K., Kalliala, I., & Kyrgiou, M. (2023). Risk factors for human papillomavirus infection, cervical intraepithelial neoplasia and cervical cancer: an umbrella review and follow-up Mendelian randomisation studies. BMC Medicine, 21, 274. https://doi.org/10.1186/s12916-023-02965-w
Burotto, M., Chiou, V. L., Lee, J.-M., & Kohn, E. C. (2014). The MAPK pathway across different malignancies: a new perspective. Cancer, 120(22), 3446-3456. https://doi.org/10.1002/cncr.28864
Chanu, M. T., & Singh, A. S. (2022). Cancer disease and its’ understanding from the ancient knowledge to the modern concept. World Journal of Advanced Research and Reviews, 15(2), 169-176. https://doi.org/10.30574/wjarr.2022.15.2.0809
Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Science's STKE, 2004(250), re13. https://doi.org/10.1126/stke.2502004re13
Cullen, B. R. (2004). Transcription and processing of human microRNA precursors. Molecular Cell, 16(6), 861-865. https://doi.org/10.1016/j.molcel.2004.12.002
Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V.,...Futreal, P. A. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949-954. https://doi.org/10.1038/nature00766
De Luca, A., Maiello, M. R., D'Alessio, A., Pergameno, M., & Normanno, N. (2012). The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opinion on Therapeutic Targets, 16(S2), S17-S27. https://doi.org/10.1517/14728222.2011.639361
Dérijard, B., Hibi, M., Wu, I., Barrett, T., Su, B., Deng, T., Karin, M., & Davis, R. J. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 76(6), 1025-1037. https://doi.org/10.1016/0092-8674(94)90380-8
Fabian, M. R., Sonenberg, N., & Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry, 79, 351-379. https://doi.org/10.1146/annurev-biochem-060308-103103
Griffiths‐Jones, S. (2004). The microRNA registry. Nucleic Acids Research, 32(S1), D109-D111. https://doi.org/10.1093/nar/gkh023
Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human microRNA targets. PLoS Biology, 3(7), e264. https://doi.org/10.1371/journal.pbio.0030264
Kaplan, D. R., Martin-Zanca, D., & Parada, L. F. (1991). Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature, 350, 158-160. https://doi.org/10.1038/350158a0
Kolonel, L. N., Altshuler, D., & Henderson, B. E. (2004). The multiethnic cohort study: exploring genes, lifestyle and cancer risk. Nature Reviews Cancer, 4, 519-527. https://doi.org/10.1038/nrc1389
Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K. C., Stoffel, M., & Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37, 495-500. https://doi.org/10.1038/ng1536
Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J., & Woodgett, J. R. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 369, 156-160. https://doi.org/10.1038/369156a0
Lee, J.-H., Lee, S.-K., Yang, M.-H., Ahmed, M. M., Mohiuddin, M., & Lee, E. Y. (1996). Expression and mutation of H-ras in uterine cervical cancer. Gynecologic Oncology, 62(1), 49-54. https://doi.org/10.1006/gyno.1996.0188
Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15-20. https://doi.org/10.1016/j.cell.2004.12.035
Lewis, B. P., Shih, I., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115(7), 787-798. https://doi.org/10.1016/S0092-8674(03)01018-3
Li, W., Liang, J., Zhang, Z., Lou, H., Zhao, L., Xu, Y., & Ou, R. (2017). MicroRNA-329-3p targets MAPK1 to suppress cell proliferation, migration and invasion in cervical cancer. Oncology Reports, 37(5), 2743-2750. https://doi.org/10.3892/or.2017.5555
Liu, W., Mao, S.-Y., & Zhu, W.-Y. (2007). Impact of tiny miRNAs on cancers. World Journal of Gastroenterology, 13(4), 497-502.
MacFarlane, L.-A., & Murphy, P. R. (2010). MicroRNA: biogenesis, function and role in cancer. Current Genomics, 11(7), 537-561. https://doi.org/10.2174/138920210793175895
Mohemed, F. M., Fatih, B. N., Qadir, A. A., Abdalla, S. H., & Mahmood, Z. H. (2023). Cancer Publications in One Year (2022): A Cross-Sectional Study. Barw Medical Journal, 1(2), 30. https://doi.org/10.58742/bmj.v1i2.30
O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology, 9, 402. https://doi.org/10.3389/fendo.2018.00402
Perron, M. P., & Provost, P. (2008). Protein interactions and complexes in human microRNA biogenesis and function. Frontiers in Bioscience, 13(7), 2537-2547. https://doi.org/10.2741/2865
Quilliam, L. A., Rebhun, J. F., & Castro, A. F. (2002). A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Progress in Nucleic Acid Research and Molecular Biology, 71, 391-444. https://doi.org/10.1016/S0079-6603(02)71047-7
Rajewsky, N. (2006). microRNA target predictions in animals. Nature Genetics, 38, S8-S13. https://doi.org/10.1038/ng1798
Rajewsky, N., & Socci, N. D. (2004). Computational identification of microRNA targets. Developmental Biology, 267(2), 529-535. https://doi.org/10.1016/j.ydbio.2003.12.003
Robinson, M. J., & Cobb, M. H. (1997). Mitogen-activated protein kinase pathways. Current Opinion in Cell Biology, 9(2), 180-186. https://doi.org/10.1016/S0955-0674(97)80061-0
Scaltriti, M., & Baselga, J. (2006). The epidermal growth factor receptor pathway: a model for targeted therapy. Clinical Cancer Research, 12(18), 5268-5272. https://doi.org/10.1158/1078-0432.CCR-05-1554
Sellors, J. W., & Sankaranarayanan, R. (2003). Colposcopy and treatment of cervical intraepithelial neoplasia: A beginner's manual. Lyon, France: International Agency for Research on Cancer.
Sun, Y., Liu, W.-Z., Liu, T., Feng, X., Yang, N., & Zhou, H.-F. (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptors and Signal Transduction, 35(6), 600-604. https://doi.org/10.3109/10799893.2015.1030412
Tsai, F.-M., Shyu, R.-Y., & Jiang, S.-Y. (2006). RIG1 inhibits the Ras/mitogen-activated protein kinase pathway by suppressing the activation of Ras. Cellular Signalling, 18(3), 349-358. https://doi.org/10.1016/j.cellsig.2005.05.005
Vasudevan, S. (2012). Posttranscriptional upregulation by microRNAs. Wiley Interdisciplinary Reviews: RNA, 3(3), 311-330. https://doi.org/10.1002/wrna.121
Wan, P. T. C., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Cancer Genome Project, Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D., & Marais, R. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 116(6), 855-867. https://doi.org/10.1016/S0092-8674(04)00215-6
Wani, A. A. (2023). Cancer: Its Symptoms, Challenges and Opportunities in Research in India: A Review. Saudi Journal of Medical and Pharmaceutical Sciences, 9(1), 1-5. https://doi.org/10.36348/sjmps.2023.v09i01.001
Yarden, Y., & Ullrich, A. (1988). Growth factor receptor tyrosine kinases. Annual Review of Biochemistry, 57, 443-478. https://doi.org/10.1146/annurev.bi.57.070188.002303
Ying, S.-Y., Chang, D. C., & Lin, S.-. (2008). The microRNA (miRNA): overview of the RNA genes that modulate gene function. Molecular Biotechnology, 38, 257-268. https://doi.org/10.1007/s12033-007-9013-8
Zeng, Y., Yi, R., & Cullen, B. R. (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proceedings of the National Academy of Sciences, 100(17), 9779-9784. https://doi.org/10.1073/pnas.1630797100
Zhang, W., & Liu, H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research, 12, 9-18. https://doi.org/10.1038/sj.cr.7290105
Zhao, Y., & Srivastava, D. (2007). A developmental view of microRNA function. Trends in Biochemical Sciences, 32(4), 189-197. https://doi.org/10.1016/j.tibs.2007.02.006
Zheng, W., Liu, Z., Zhang, W., & Hu, X. (2015). miR-31 functions as an oncogene in cervical cancer. Archives of Gynecology and Obstetrics, 292, 1083-1089. https://doi.org/10.1007/s00404-015-3713-2
Published
How to Cite
Issue
Section
Copyright (c) 2024 Recent Research in Science and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.