Recombinant DNA technology: revolutionizing regenerative medicine and empowering nanotechnology strategies

Authors

  • Mallela Lakshmi Division of Molecular Biology, School of Life Sciences, JSS Academy of Higher education & Research, Mysuru-570015, Karnataka, India
  • A. S. Dhanu Division of Molecular Biology, School of Life Sciences, JSS Academy of Higher education & Research, Mysuru-570015, Karnataka, India
  • G. G. Swamy Department of Pathology, Faculty of Medicine and Health Sciences, Quest International University, Malaysia
  • Karthikeyan Murugesan Department of Microbiology, Faculty of Medicine and Health Sciences, Quest International University, Malaysia
  • Anjuna Radhakrishnan Department of Microbiology, Faculty of Medicine and Health Sciences, Quest International University, Malaysia
  • Uthamalingam Murali Department of Surgery, Manipal University College Malaysia, Malaysia
  • S. Jagannathan Pasteur Institute of India, Coonoor-643103, The Nilgiris, Tamil Nadu, India
  • Boojhana Elango Department of Microbiology, Muthayammal College of Arts and Science, Rasipuram, Namakkal-637408, Tamil Nadu, India
  • Maghimaa Mathanmohun Department of Microbiology, Muthayammal College of Arts and Science, Rasipuram, Namakkal-637408, Tamil Nadu, India
  • Kanthesh M. Basalingappa Division of Molecular Biology, School of Life Sciences, JSS Academy of Higher education & Research, Mysuru-570015, Karnataka, India

DOI:

https://doi.org/10.25081/rrst.2023.15.8732

Keywords:

Insulin, Regenerative Medicine, Nanotechnology, Tissue engineering

Abstract

In the past century, the concept of controlling gene expressions to enhance desirable traits in living organisms through recombinant DNA technology was merely a concept. However, in recent times, this field has made significant advancements, offering unique benefits to human life. Recombinant DNA technology allows for the safe, accessible, and abundant production of crucial proteins needed for addressing various health issues. Through laboratory methods of genetic manipulation, scientists generate recombinant DNA molecules by merging genetic material from various origins that wouldn’t naturally occur within organisms. Although the chemical structure of DNA is the same across all organisms, the nucleotide sequences vary. The application of recombinant DNA technology extends to diverse fields such as regenerative medicine, nanotechnology, and tissue engineering, allowing for the production of proteins with specific characteristics and effectiveness. This article will delve into the prevalent applications of recombinant DNA technology within fundamental research, highlighting its crucial role in contemporary endeavours across the realms of biological and biomedical sciences, particularly within the fields of regenerative medicine and nanotechnology.

Downloads

Download data is not yet available.

References

Ahmar, S., Saeed, S., Khan, M. H. U., Ullah Khan, S., Mora-Poblete, F., Kamran, M., Faheem, A., Maqsood, A., Rauf, M., Saleem, S., Hong, W. J., & Jung, K. H. (2020). A revolution toward gene-editing technology and its application to crop improvement. International Journal of Molecular Sciences, 21(16), 5665. https://doi.org/10.3390/ijms21165665

Altpeter, F., Springer, N. M., Bartley, L. E., Blechl, A. E., Brutnell, T. P., Citovsky, V., Conrad, L. J., Gelvin, S. B., Jackson, D. P., Kausch, A. P., Lemaux, P. G., Medford, J. I., Orozco-Cárdenas, M. L., Tricoli, D. M., Van Eck, J., Voytas, D. F., Walbot, V., Wang, K., Zhang, Z. J., & Stewart, C. N. (2016). Advancing crop transformation in the era of genome editing. Plant Cell, 28(7), 1510-1520. https://doi.org/10.1105/tpc.16.00196

Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576, 149-157. https://doi.org/10.1038/s41586-019-1711-4

Bajželj, B., Richards, K. S., Allwood, J. M., Smith, P., Dennis, J. S., Curmi, E., & Gilligan, C. A. (2014). Importance of food-demand management for climate mitigation. Nature Climate Change, 4(10), 924-929. https://doi.org/10.1038/nclimate2353

Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428, 668-673. https://doi.org/10.1038/nature02460

Bernhardt, E. S., Colman, B. P., Hochella, M. F., Cardinale, B. J., Nisbet, R. M., Richardson, C. J., & Yin, L. (2010). An ecological perspective on nanomaterial impacts in the environment. Journal of Environmental Quality, 39(6), 1954-1965. https://doi.org/10.2134/jeq2009.0479

Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., & LaFerla, F. M. (2005). Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron, 45(5), 675-688. https://doi.org/10.1016/j.neuron.2005.01.040

Blocki, A., Beyer, S., Dewavrin, J. Y., Goralczyk, A., Wang, Y., Peh, P., Ng, M., Moonshi, S. S., Vuddagiri, S., Raghunath, M., Martinez, E. C., & Bhakoo, K. K. (2015). Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium. Biomaterials, 53, 12-24. https://doi.org/10.1016/j.biomaterials.2015.02.075

Blurton-Jones, M., Spencer, B., Michael, S., Castello, N. A., Agazaryan, A. A., Davis, J. L., Müller, F. J., Loring, J. F., Masliah, E., & LaFerla, F. M. (2014). Neural stem cells genetically modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Research and Therapy, 5(2), 46. https://doi.org/10.1186/scrt440

Butler, J., Epstein, S. E., Greene, S. J., Quyyumi, A. A., Sikora, S., Kim, R. J., Anderson, A. S., Wilcox, J. E., Tankovich, N. I., Lipinski, M. J., Ko, Y. A., Margulies, K. B., Cole, R. T., Skopicki, H. A., & Gheorghiade, M. (2017). Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: Safety and efficacy results of a phase II-A randomized trial. Circulation Research, 120(2), 332-340. https://doi.org/10.1161/CIRCRESAHA.116.309717

Butler, N. M., Baltes, N. J., Voytas, D. F., & Douches, D. S. (2016). Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Frontiers in Plant Science, 7, 1045. https://doi.org/10.3389/fpls.2016.01045

Cederbaum, S. D., Fareed, G. C., Lovett, M. A., & Shapiro, L. J. (1984). Recombinant DNA in medicine. Western Journal of Medicine, 141(2), 210-222.

Chance, R. E., & Frank, B. H. (1993). Research, development, production, and safety of biosynthetic human insulin. Diabetes Care, 16(S3), 133-142. https://doi.org/10.2337/diacare.16.3.133

Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049

Chen, Y. W., Lee, H. V., Juan, J. C., & Phang, S. M. (2016). Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers, 151, 1210-1219. https://doi.org/10.1016/j.carbpol.2016.06.083

Cheng, Y. S., Kwoh, D. Y., Kwoh, T. J., Soltvedt, B. C., & Zipser, D. (1981). Stabilization of a degradable protein by its overexpression in Escherichia coli. Gene, 14(1-2), 121-130. https://doi.org/10.1016/0378-1119(81)90154-2

Chiossone, L., Conte, R., Spaggiari, G. M., Serra, M., Romei, C., Bellora, F., Becchetti, F., Andaloro, A., Moretta, L., & Bottino, C. (2016). Mesenchymal stromal cells induce peculiar alternatively activated macrophages capable of dampening both innate and adaptive immune responses. Stem Cells, 34(7), 1909-1921. https://doi.org/10.1002/stem.2369

Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A. J., & Voytas, D. F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2), 757-761. https://doi.org/10.1534/genetics.110.120717

Chu, J., Shi, P., Yan, W., Fu, J., Yang, Z., He, C., Deng, X., & Liu, H. (2018). Pegylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. Nanoscale, 10(20), 9547-9560. https://doi.org/10.1039/c8nr02538j

Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., & Landry, M. P. (2018). Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology, 36(9), 882-897. https://doi.org/10.1016/j.tibtech.2018.03.009

Davani, S., Marandin, A., Mersin, N., Royer, B., Kantelip, B., Hervé, P., Etievent, J.-P., & Kantelip, J.-P. (2003). Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation, 108(10_S1), 253-258. https://doi.org/10.1161/01.cir.0000089186.09692.fa

de Melo, B. P., Lourenço-Tessutti, I. T., Morgante, C. V., Santos, N. C., Pinheiro, L. B., de Jesus Lins, C. B., Silva, M. C. M., Macedo, L. L. P., Fontes, E. P. B., & Grossi-de-Sa, M. F. (2020). Soybean embryonic axis transformation: Combining biolistic and Agrobacterium-mediated protocols to overcome typical complications of in vitro plant regeneration. Frontiers in Plant Science, 11, 1228. https://doi.org/10.3389/fpls.2020.01228

Ding, R., Jiang, X., Ha, Y., Wang, Z., Guo, J., Jiang, H., Zheng, S., Shen, Z., & Jie, W. (2015). Activation of Notch1 signalling promotes multi-lineage differentiation of c-KitPOS/NKX2.5POS bone marrow stem cells: Implication in stem cell translational medicine. Stem Cell Research and Therapy, 6(1), 91. https://doi.org/10.1186/s13287-015-0085-2

Dong, O. X., Yu, S., Jain, R., Zhang, N., Duong, P. Q., Butler, C., Li, Y., Lipzen, A., Martin, J. A., Barry, K. W., Schmutz, J., Tian, L., & Ronald, P. C. (2020). Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications, 11, 1178. https://doi.org/10.1038/s41467-020-14981-y

Dubey, A., & Mailapalli, D. R. (2016). Nanofertilisers, nanopesticides, nanosensors of pests and nanotoxicity in agriculture. In E. Lichtfouse (Eds.), Sustainable Agriculture Review (Vol. 19, pp. 307-330) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-26777-7_7

Fan, D., Takawale, A., Lee, J., & Kassiri, Z. (2012). Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis and Tissue Repair, 5, 15. https://doi.org/10.1186/1755-1536-5-15

Farzaneh, M., Rahimi, F., Alishahi, M., & Khoshnam, S. E. (2019). Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Current Stem Cell Research and Therapy, 14(1), 9-13. https://doi.org/10.2174/1574888X13666180821160421

Fayos, I., Meunier, A. C., Vernet, A., Navarro-Sanz, S., Portefaix, M., Lartaud, M., Bastianelli, G., Périn, C., Nicolas, A., & Guiderdoni, E. (2020). Assessment of the roles of SPO11-2 and SPO11-4 in meiosis in rice using CRISPR/Cas9 mutagenesis. Journal of Experimental Botany, 71(22), 7046-7058. https://doi.org/10.1093/jxb/eraa391

Feng, D., Wang, Y., Wu, J., Lu, T., & Zhang, Z. (2017). Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation. Crop Journal, 5(4), 271-281. https://doi.org/10.1016/j.cj.2017.04.001

Ferrie, A. M. R., Bhowmik, P., Rajagopalan, N., & Kagale, S. (2020). CRISPR/Cas9-mediated targeted mutagenesis in wheat doubled haploids. In L. M. Vaschetto (Eds.), Cereal genomics: Methods and Protocols (pp. 183-198) Humana, US: Springer.

Fiaz, S., Khan, S. A., Anis, G. B., Gaballah, M. M., & Riaz, A. (2021). CRISPR/Cas techniques: A new method for RNA interference in cereals. In K. A. Abd-Elsalam & K.-T. Lim (Eds.), CRISPR and RNAi systems (pp. 233-252). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-821910-2.00032-1

Galloway, J. A., Root, M. A., Bergstrom, R., Spradlin, C. T., Howey, D. C., Fineberg, S. E., & Jackson, R. L. (1982). Clinical pharmacologic studies with human insulin (recombinant DNA). Diabetes Care, 5 (S2), 13-22. https://doi.org/10.2337/diacare.5.2.s13

García-Granados, R., Lerma-Escalera, J. A., & Morones-Ramírez, J. R. (2019). Metabolic engineering and synthetic biology: Synergies, future, and challenges. Frontiers in Bioengineering and Biotechnology, 7, 36. https://doi.org/10.3389/fbioe.2019.00036

Giraldo, J. P., Wu, H., Newkirk, G. M., & Kruss, S. (2019). Nanotechnology approaches for engineering smart plant sensors. Nature Nanotechnology, 14, 541-553. https://doi.org/10.1038/s41565-019-0470-6

Glick, B. R., & Patten, C. L. (2022). Molecular biotechnology: Principles and applications of recombinant DNA. New Jersey, United States: John Wiley & Sons.

Griffith, A. J. F., Gelbart, W. M., Lewontin, R. C., & Miller, J. H. (1999). Modern genetic analysis. US: W. H. Freeman & Co Ltd.

Hallewell, R. A., Masiarz, F. R., Najarian, R. C., Puma, J. P., Quiroga, M. R., Randolph, A., Sanchez-Pescador, R., Scandella, C. J., Smith, B., Steimer, K. S., & Mullenbach, G. T. (1985). Human Cu/Zn superoxide dismutase cDNA: Isolation of clones synthesising high levels of active or inactive enzyme from an expression library. Nucleic Acids Research, 13(6), 2017-2034. https://doi.org/10.1093/nar/13.6.2017

Hilgenfeld, R., Seipke, G., Berchtold, H., & Owens, D. R. (2014). The evolution of insulin glargine and its continuing contribution to diabetes care. Drugs, 74, 911-927. https://doi.org/10.1007/s40265-014-0226-4

Hoet, R. M., Cohen, E. H., Kent, R. B., Rookey, K., Schoonbroodt, S., Hogan, S., Rem, L., Frans, N., Daukandt, M., Pieters, H., van Hegelsom, R., Neer, N. C., Nastri, H. G., Rondon, I. J., Leeds, J. A., Hufton, S. E., Huang, L., Kashin, I., Devlin, M.,. . .Ladner, R. C. (2005). Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nature Biotechnology, 23(3), 344-348. https://doi.org/10.1038/nbt1067

Hong, W.-J., Kim, Y.-J., Kim, E.-J., Chandran, A. K. N., Moon, S., Gho, Y.-S., Yoou, M.-H., Kim, S. T., & Jung, K.-H. (2020). CAFRI‐Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice. The Plant Journal, 104(2), 532-545. https://doi.org/10.1111/tpj.14926

Hoogenboom, H. R., de Bruıne, A. P., Hufton, S. E., Hoet, R. M., Arends, J. W., & Roovers, R. C. (1998). Antibody phage display technology and its applications. Immunotechnology, 4(1), 1-20. https://doi.org/10.1016/s1380-2933(98)00007-4

Hosseini, A. M., Megges, M., Prigione, A., Lichtner, B., Toliat, M. R., Wruck, W., Schröter, F., Nuernberg, P., Kroll, H., Makrantonaki, E., Zoubouliss, C. C., & Adjaye, J. (2015). Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics, 16(1), 84. https://doi.org/10.1186/s12864-015-1262-5

Hughes, S. S. (2001). Making dollars out of DNA: The first major patent in biotechnology and the commercialization of molecular biology, 1974–1980. Isis; an International Review Devoted to the History of Science and Its Cultural Influences, 92(3), 541-575. https://doi.org/10.1086/385281

Imai, R., Hamada, H., Liu, Y., Linghu, Q., Kumagai, Y., Nagira, Y., Miki, R., & Taoka, N. (2020). In planta particle bombardment (iPB): A new method for plant transformation and genome editing. Plant Biotechnology, 37(2), 171-176. https://doi.org/10.5511/plantbiotechnology.20.0206a

Jampílek, J., & Kráľová, K. (2015). Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecological Chemistry and Engineering S, 22(3), 321-361. https://doi.org/10.1515/eces-2015-0018

Jensen, E. T., Bertoni, A. G., Crago, O. L., Hoffman, K. L., Wood, A. C., Arzumanyan, Z., Lam, L. K., Roll, K., Sandow, K., Wu, M., Rich, S. S., Rotter, J. I., Chen, Y. I., Petrosino, J. F., & Goodarzi, M. O. (2020). Rationale, design and baseline characteristics of the Microbiome and Insulin Longitudinal Evaluation Study (MILES). Diabetes, Obesity and Metabolism, 22(11), 1976-1984. https://doi.org/10.1111/dom.14145

Johnson, I. S. (1983). Human insulin from recombinant DNA technology. Science, 219(4585), 632-637. https://doi.org/10.1126/science.6337396

Jonasson, P., Nilsson, J., Samuelsson, E., Moks, T., Ståhl, S., & Uhlén, M. (1996). Single‐step trypsin cleavage of a fusion protein to obtain human insulin and its C peptide. European Journal of Biochemistry, 236(2), 656-661. https://doi.org/10.1111/j.1432-1033.1996.00656.x

Ju, C., Shen, Y., Ma, G., Liu, Y., Cai, J., Kim, I.-M., Weintraub, N. L., Liu, N., & Tang, Y. (2018). Transplantation of cardiac mesenchymal stem cell-derived exosomes promotes repair in ischemic myocardium. Journal of Cardiovascular Translational Research, 11, 420-428. https://doi.org/10.1007/s12265-018-9822-0

Koransky, M. L., Robbins, R. C., & Blau, H. M. (2002). VEGF gene delivery for treatment of ischemic cardiovascular disease. Trends in Cardiovascular Medicine, 12(3), 108-114. https://doi.org/10.1016/s1050-1738(01)00158-x

Kumar, S., Bhanjana, G., Sharma, A., Dilbaghi, N., Sidhu, M. C., & Kim, K.-H. (2017). Development of nanoformulation approaches for the control of weeds. Science of The Total Environment, 586, 1272-1278. https://doi.org/10.1016/j.scitotenv.2017.02.138

Kurozumi, K., Nakamura, K., Tamiya, T., Kawano, Y., Ishii, K., Kobune, M., Hirai, S., Uchida, H., Sasaki, K., Ito, Y., Kato, K., Honmou, O., Houkin, K., Date, I., & Hamada, H. (2005). Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Molecular Therapy, 11(1), 96-104. https://doi.org/10.1016/j.ymthe.2004.09.020

Kwak, K.-A., Lee, S.-P., Yang, J.-Y., & Park, Y.-S. (2018). Current perspectives regarding stem cell-based therapy for Alzheimer’s disease. Stem Cells International, 2018, 6392986. https://doi.org/10.1155/2018/6392986

Ladisch, M. R., & Kohlmann, K. L. (1992). Recombinant human insulin. Biotechnology Progress, 8(6), 469-478. https://doi.org/10.1021/bp00018a001

Lange, C., Bassler, P., Lioznov, M. V., Bruns, H., Kluth, D., Zander, A. R., & Fiegel, H. C. (2005). Hepatocytic gene expression in cultured rat mesenchymal stem cells. Transplantation Proceedings, 37(1), 276-279. https://doi.org/10.1016/j.transproceed.2004.11.087

Lei, J., Dai, P., Li, J., Yang, M., Li, X., Zhang, W., Zhou, G., WangzhenGuo, L. X., & Liu, X. (2021). Tissue-specific CRISPR/Cas9 system of cotton pollen with GhPLIMP2b and GhMYB24 promoters. Journal of Plant Biology, 64, 13-21. https://doi.org/10.1007/s12374-020-09272-4

Lei, Y., Haider, H. K., Shujia, J., & Sim, E. S. K. (2004). Therapeutic angiogenesis: Devising new strategies based on past experiences. Basic Research in Cardiology, 99, 121-132. https://doi.org/10.1007/s00395-004-0447-x

Lewis, T., & Potter, E. (2013). Ethical consumption: A critical introduction. (1st ed.). London, United Kingdom: Routledge.

Li, J., Wang, Z., He, G., Ma, L., & Deng, X. W. (2020). CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. Journal of Genetics and Genomics, 47(5), 263-272. https://doi.org/10.1016/j.jgg.2020.05.004

Li, L., Chen, X., Wang, W. E., & Zeng, C. (2016). How to improve the survival of transplanted mesenchymal stem cells in ischemic heart? Stem Cells International, 2016, 9682757. https://doi.org/10.1155/2016/9682757

Li, M., Sun, X., Yin, M., Shen, J., & Yan, S. (2023). Recent advances in nanoparticle-mediated co-delivery system: A promising strategy in medical and Agricultural Field. International Journal of Molecular Sciences, 24(6), 5121. https://doi.org/10.3390/ijms24065121

Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V., Raguram, A., Doman, J. L., Liu, D. R., & Gao, C. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38(5), 582-585. https://doi.org/10.1038/s41587-020-0455-x

Luque-Contreras, D., Carvajal, K., Toral-Rios, D., Franco-Bocanegra, D., & Campos-Peña, V. (2014). Oxidative stress and metabolic syndrome: Cause or consequence of Alzheimer’s disease? Oxidative Medicine and Cellular Longevity, 2014, 497802. https://doi.org/10.1155/2014/497802

Manghwar, H., Lindsey, K., Zhang, X., & Jin, S. (2019). CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends in Plant Science, 24(12), 1102–1125. https://doi.org/10.1016/j.tplants.2019.09.006

Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., & Dzau, V. J. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9, 1195-1201. https://doi.org/10.1038/nm912

Mann, N. P., Johnston, D. I., Reeves, W. G., & Murphy, M. A. (1983). Human insulin and porcine insulin in the treatment of diabetic children: Comparison of metabolic control and insulin antibody production. British Medical Journal, 287, 1580-1582. https://doi.org/10.1136/bmj.287.6405.1580

Markussen, J., Damgaard, U. L., Pingel, M. A., Snel, L., Sørensen, A. R., & Sørensen, E. (1983). Human insulin (Novo): Chemistry and characteristics. Diabetes Care, 6(S1), 4-8.

Martínez, M. I. S., Bracuto, V., Koseoglu, E., Appiano, M., Jacobsen, E., Visser, R. G. F., Wolters, A.-M. A., & Bai, Y. (2020). CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biology, 20, 284. https://doi.org/10.1186/s12870-020-02497-y

Mayer, J. P., Zhang, F., & DiMarchi, R. D. (2007). Insulin structure and function. Biopolymers, 88(5), 687-713. https://doi.org/10.1002/bip.20734

Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., Salio, M., Battaglia, M., Latronico, M. V., Coletta, M., Vivarelli, E., Frati, L., Cossu, G., & Giacomello, A. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911-921. https://doi.org/10.1161/01.RES.0000147315.71699.51

Miller, W. L., & Baxter, J. D. (1980, June). Recombinant DNA—A new source of insulin. Diabetologia, 18, 431-436. https://doi.org/10.1007/BF00261696

Mizumoto, H., Mizumoto, K., Shatos, M. A., Klassen, H., & Young, M. J. (2003). Retinal transplantation of neural progenitor cells derived from the brain of GFP transgenic mice. Vision Research, 43(16), 1699-1708. https://doi.org/10.1016/s0042-6989(03)00235-9

Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S., Sun, Y., Evans, S. M., Laugwitz, K. L., & Chien, K. R. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127(6), 1151-1165. https://doi.org/10.1016/j.cell.2006.10.029

Morihara, K. (1990). Enzymatic semisynthesis of human insulin: An update. Journal of Molecular Recognition, 3(5-6), 181-186. https://doi.org/10.1002/jmr.300030502

Mout, R., Ray, M., Yesilbag Tonga, G., Lee, Y. W., Tay, T., Sasaki, K., & Rotello, V. M. (2017). Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano, 11(3), 2452–2458. https://doi.org/10.1021/acsnano.6b07600

Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., Pasumarthi, K. B., Virag, J. I., Bartelmez, S. H., Poppa, V., Bradford, G., Dowell, J. D., Williams, D. A., & Field, L. J. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664-668. https://doi.org/10.1038/nature02446

Najar, M., Raicevic, G., Fayyad-Kazan, H., Bron, D., Toungouz, M., & Lagneaux, L. (2016). Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells. Cytotherapy, 18(2), 160-171. https://doi.org/10.1016/j.jcyt.2015.10.011

Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31, 691-693. https://doi.org/10.1038/nbt.2655

Noguchi, H., Xu, G., Matsumoto, S., Kaneto, H., Kobayashi, N., Bonner-Weir, S., & Hayashi, S. (2006). Induction of pancreatic stem/progenitor cells into insulin-producing cells by adenoviral-mediated gene transfer technology. Cell Transplantation, 15(10), 929-938. https://doi.org/10.3727/000000006783981431

Obermeier, R., & Geiger, R.. (1976). A new semisynthesis of human insulin. Biological Chemistry, 357(6), 759-767. https://doi.org/10.1515/bchm2.1976.357.1.759

Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., & LaFerla, F. M. (2003). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron, 39(3), 409-421. https://doi.org/10.1016/s0896-6273(03)00434-3

Paukner, S., Kohl, G., & Lubitz, W. (2004). Bacterial ghosts as novel advanced drug delivery systems: Antiproliferative activity of loaded doxorubicin in human Caco-2 cells. Journal of Controlled Release, 94(1), 63-74. https://doi.org/10.1016/j.jconrel.2003.09.010

Perneczky, R., Alexopoulos, P., & Alzheimer's Disease euroimaging Initiative. (2014). Cerebrospinal fluid BACE1 activity and markers of amyloid precursor protein metabolism and axonal degeneration in Alzheimer’s disease. Alzheimer’s and Dementia, 10(S5), S425-S429.e1. https://doi.org/10.1016/j.jalz.2013.09.006

Phillips, M. I., & Sumners, C. (1998). Angiotensin II in central nervous system physiology. Regulatory Peptides, 78(1-3), 1-11. https://doi.org/10.1016/s0167-0115(98)00122-0

Phillips, M. I., & Tang, Y. L. (2008). Genetic modification of stem cells for transplantation. Advanced Drug Delivery Reviews, 60(2), 160-172. https://doi.org/10.1016/j.addr.2007.08.035

Pillarisetti, K., & Gupta, S. K. (2001). Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1): SDF-1 α mRNA is selectively induced in the rat model of myocardial infarction. Inflammation, 25, 293-300. https://doi.org/10.1023/a:1012808525370

Poggioli, T., Vujic, A., Yang, P., Macias-Trevino, C., Uygur, A., Loffredo, F. S., Pancoast, J. R., Cho, M., Goldstein, J., Tandias, R. M., Gonzalez, E., Walker, R. G., Thompson, T. B., Wagers, A. J., Fong, Y. W., & Lee, R. T. (2016). Circulating growth differentiation factor 11/8 levels decline with age. Circulation Research, 118(1), 29-37. https://doi.org/10.1161/CIRCRESAHA.115.307521

Portelius, E., Dean, R. A., Gustavsson, M. K., Andreasson, U., Zetterberg, H., Siemers, E., & Blennow, K. (2010). A novel Aβ isoform pattern in CSF reflects γ-secretase inhibition in Alzheimer disease. Alzheimer’s Research and Therapy, 2(2), 7. https://doi.org/10.1186/alzrt30

Puchta, H., Dujon, B., & Hohn, B. (1993). Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Research, 21(22), 5034-5040. https://doi.org/10.1093/nar/21.22.5034

Ramesh, G., Wood, A. C., Allison, M. A., Rich, S. S., Jensen, E. T., Chen, Y. I., Rotter, J. I., Bertoni, A. G., & Goodarzi, M. O. (2022). Associations between adherence to the dietary approaches to stop hypertension (DASH) diet and six glucose homeostasis traits in the Microbiome and Insulin Longitudinal Evaluation Study (MILES). Nutrition, Metabolism, and Cardiovascular Diseases, 32(6), 1418-1426. https://doi.org/10.1016/j.numecd.2022.03.014

Raskin, P., & Clements, Jr., R. S. (1991). The use of human insulin derived from baker’s yeast by recombinant DNA technology. Clinical Therapeutics, 13(5), 569-578.

Regmi, D., Al-Shamsi, S., Govender, R. D., & Al Kaabi, J. (2020). Incidence and risk factors of type 2 diabetes mellitus in an overweight and obese population: A long-term retrospective cohort study from a Gulf state. BMJ Open, 10(7), e035813. https://doi.org/10.1136/bmjopen-2019-035813

Rui, Y., Varanasi, M., Mendes, S., Yamagata, H. M., Wilson, D. R., & Green, J. J. (2020). Poly(beta-amino ester) nanoparticles enable nonviral delivery of CRISPR-Cas9 plasmids for gene knockout and gene deletion. Molecular Therapy Nucleic Acids, 20, 661-672. https://doi.org/10.1016/j.omtn.2020.04.005

Ruttenberg, M. A. (1972). Human insulin: Facile synthesis by modification of porcine insulin. Science, 177(4049), 623-626. https://doi.org/10.1126/science.177.4049.623

Shaheen, A., & Abed, Y. (2018). Knowledge, attitude, and practice among farm workers applying pesticides in cultivated areas of the Jericho District: A cross-sectional study. Lancet, 391(S3). https://doi.org/10.1016/S0140-6736(18)30328-3

Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558. https://doi.org/10.3390/molecules24142558

Sharma, R., Patil, N., & Sivaram, A. (2022). Ethical and safety concerns of recombinant DNA technology. In N. Patil & A. Sivaram (Eds.), A complete guide to gene cloning: From basic to advanced (pp. 159-165) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-96851-9_10

Steinberg, F. M., & Raso, J. (1998). Biotech pharmaceuticals and biotherapy: An overview. Journal of Pharmacy and Pharmaceutical Sciences, 1(2), 48-59.

Szaraz, P., Gratch, Y. S., Iqbal, F., & Librach, C. L. (2017). In vitro differentiation of human mesenchymal stem cells into functional cardiomyocyte-like cells. Journal of Visualized Experiments, 126, e55757. https://doi.org/10.3791/55757

Tang, X., Lowder, L. G., Zhang, T., Malzahn, A. A., Zheng, X., Voytas, D. F., Zhong, Z., Chen, Y., Ren, Q., Li, Q., Kirkland, E. R., Zhang, Y., & Qi, Y. (2017). A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 3, 17018. https://doi.org/10.1038/nplants.2017.18

Tang, Y. L., Shen, L., Qian, K., & Phillips, M. I. (2007). A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochemical and Biophysical Research Communications, 359(4), 877-883. https://doi.org/10.1016/j.bbrc.2007.05.216

Tang, Y. L., Zhao, Q., Qin, X., Shen, L., Cheng, L., Ge, J., & Phillips, M. I. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat models of myocardial infarction. Annals of Thoracic Surgery, 80(1), 229-236. https://doi.org/10.1016/j.athoracsur.2005.02.072

Tang, Y. L., Zhao, Q., Zhang, Y. C., Cheng, L., Liu, M., Shi, J., Yang, Y. Z., Pan, C., Ge, J., & Phillips, M. I. (2004). Autologous mesenchymal stem cell transplantation induces VEGF and neovascularization in ischemic myocardium. Regulatory Peptides, 117(1), 3-10. https://doi.org/10.1016/j.regpep.2003.09.005

Tian, Y., Chen, K., Li, X., Zheng, Y., & Chen, F. (2020). Design of high-oleic tobacco (Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2–2. BMC Plant Biology, 20, 233. https://doi.org/10.1186/s12870-020-02441-0

Tiedje, J. M., Colwell, R. K., Grossman, Y. L., Hodson, R. E., Lenski, R. E., Mack, R. N., & Regal, P. J. (1989). The planned introduction of genetically engineered organisms: Ecological considerations and recommendations. Ecology, 70(2), 298-315. https://doi.org/10.2307/1937535

Tiwari, J. N., Tiwari, R. N., & Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57(4), 724-803. https://doi.org/10.1016/j.pmatsci.2011.08.003

Vasiljević, J., Torkko, J. M., Knoch, K.-P., & Solimena, M. (2020). The making of insulin in health and disease. Diabetologia, 63, 1981-1989. https://doi.org/10.1007/s00125-020-05192-7

Walsh, G. (2005). Therapeutic insulins and their large-scale manufacture. Applied Microbiology and Biotechnology, 67, 151-159. https://doi.org/10.1007/s00253-004-1809-x

Wang, X., Zhen, L., Miao, H., Sun, Q., Yang, Y., Que, B., Lopes Lao, E. P., Wu, X., Ren, H., Shi, S., Lau, W. B., Ma, X., Ma, C., & Nie, S. (2015). Concomitant retrograde coronary venous infusion of basic fibroblast growth factor enhances engraftment and differentiation of bone marrow mesenchymal stem cells for cardiac repair after myocardial infarction. Theranostics, 5(9), 995-1006. https://doi.org/10.7150/thno.11607

Wang, Y., O’Malley, Jr., B. W., Tsai, S. Y., & O’Malley, B. W. (1994). A regulatory system for use in gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 91(17), 8180-8184. https://doi.org/10.1073/pnas.91.17.8180

Wright, D. A., Townsend, J. A., Winfrey, Jr., R. J., Irwin, P. A., Rajagopal, J., Lonosky, P. M., Hall, B. D., Jondle, M. D., & Voytas, D. F. (2005). High‐frequency homologous recombination in plants mediated by zinc‐finger nucleases. The Plant Journal, 44(4), 693-705. https://doi.org/10.1111/j.1365-313X.2005.02551.x

Yin, K., Gao, C., & Qiu, J. L. (2017). Progress and prospects in plant genome editing. Nature Plants, 3, 17107. https://doi.org/10.1038/nplants.2017.107

Zhang, H., Demirer, G. S., Zhang, H., Ye, T., Goh, N. S., Aditham, A. J., Cunningham, F. J., Fan, C., & Landry, M. P. (2019). DNA nanostructures coordinate gene silencing in mature plants. Proceedings of the National Academy of Sciences of the United States of America, 116(15), 7543-7548. https://doi.org/10.1073/pnas.1818290116

Zhang, J., Zhang, X., Chen, R., Yang, L., Fan, K., Liu, Y., Wang, G., Ren, Z., & Liu, Y. (2020). Generation of transgene-free semi dwarf maize plants by gene editing of gibberellin-oxidase20–3 using CRISPR/Cas9. Frontiers in Plant Science, 11, 1048. https://doi.org/10.3389/fpls.2020.01048

Zieliński, M., Romanik-Chruścielewska, A., Mikiewicz, D., Łukasiewicz, N., Sokołowska, I., Antosik, J., Sobolewska-Ruta, A., Bierczyńska-Krzysik, A., Zaleski, P., & Płucienniczak, A. (2019). Expression and purification of recombinant human insulin from E. coli 20 strain. Protein Expression and Purification, 157, 63-69. https://doi.org/10.1016/j.pep.2019.02.002

Zivin, M., & Pregelj, P. (2008). Prolonged treatment with donepezil increases acetylcholinesterase expression in the central nervous system. Psychiatria Danubina, 20(2), 168-173.

Published

28-12-2023

How to Cite

Lakshmi, M., Dhanu, A. S., Swamy, G. G., Murugesan, K., Radhakrishnan, A., Murali, U., Jagannathan, S., Elango, B., Mathanmohun, M., & Basalingappa, K. M. (2023). Recombinant DNA technology: revolutionizing regenerative medicine and empowering nanotechnology strategies. Recent Research in Science and Technology, 15, 22–35. https://doi.org/10.25081/rrst.2023.15.8732

Issue

Section

Articles