Improvement of plant disease classification accuracy with generative model-synthesized training datasets

Authors

  • Enow Takang Achuo Albert Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Center Region, Cameroon
  • Ngalle Hermine Bille Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Center Region, Cameroon
  • Ngonkeu Mangaptche Eddy Leonard Department of Plant Biology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Center Region, Cameroon

DOI:

https://doi.org/10.25081/rib.2023.v14.8214

Keywords:

Plant disease phenotyping, Generative adversarial networks, Classification accuracy improvement

Abstract

Digitalization in agriculture requires critical research into applications of artificial intelligence to various specialization domains. This work aimed at investigating the application of image synthesis technology to the mitigation of the data volume constraint to digital plant disease phenotyping accuracy. We designed an experiment involving the use of a deep convolutional generative adversarial network (DC-GAN) to synthesize photorealistic data for healthy and bacterial spot disease-infected tomato leaves. The training dataset contained 1,272 instances per class. We further employed a 3-block visual geometry group (VGG) convolutional neural network (CNN) model with dropout regularization and 1 epoch to compare classification accuracies of the original dataset and various synthetic datasets. Our results showed that the third DC-GAN synthesized training dataset containing 3,816 synthetic examples of both healthy and bacterial spot infected tomato leaf classes outperformed the original training dataset containing 1,272 real examples of both tomato leaf classes (77.088% accuracy with the former dataset on a 3-block VGG CNN model with dropout regularization and 1 epoch, as compared to 76.447% accuracy with the latter dataset on the same classifier).

Downloads

Download data is not yet available.

References

Bin, L., Cheng, T., Shuqin, L., Jinrong, H., & Hongyan, W. (2020). A Data Augmentation Method Based on Generative Adversarial Networks for Grape Leaf Disease Identification. IEEE Access, 8, 102188-102198. https://doi.org/10.1109/ACCESS.2020.2998839

Bresilla, K., Perulli, G. D., Boini, A., Morandi, B., Grappadelli, L. C., & Manfrini, L. (2019). Single-Shot Convolution Neural Networks for Real-Time Fruit Detection Within the Tree. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00611

Brownlee, J. (2019a). Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python. Machine Learning Mastery.

Brownlee, J. (2019b). Generative Adversarial Networks with Python: Deep Learning Generative Models for Image Synthesis and Image Translation. Machine Learning Mastery.

Castillo-Botón, C., Casillas-Pérez, D., Casanova-Mateo, C., Ghimire, S., Cerro-Prada, E., Gutierrez, P. A., Deo, R. C., & Salcedo-Sanz, S. (2022). Machine learning regression and classification methods for fog events prediction. Atmospheric Research, 272, 106157. https://doi.org/10.1016/j.atmosres.2022.106157

Chaturvedi, D. K. (2008). Factors Affecting the Performance of Artificial Neural Network Models. In D. K. Chaturvedi (Ed.), Soft Computing: Techniques and its Applications in Electrical Engineering (pp. 51-85) Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-77481-5_4

Deng, H., Luo, D., Chang, Z., Li, H., & Yang, X. (2021). RAHC_GAN: A Data Augmentation Method for Tomato Leaf Disease Recognition. Symmetry, 13(9), 9. https://doi.org/10.3390/sym13091597

GitHub-Enowtakang. (n.d.). 1-GANs-study. Retrieved from https://github.com/Enowtakang/1-GANs-study

Giuffrida, M. V., Scharr, H., & Tsaftaris, S. A. (2017). ARIGAN: Synthetic Arabidopsis Plants using Generative Adversarial Network (p. 184259). bioRxiv. https://doi.org/10.1101/184259

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks (arXiv:1406.2661). arXiv. https://doi.org/10.48550/arXiv.1406.2661

Gutiérrez, S., Fernández-Novales, J., Diago, M. P., & Tardaguila, J. (2018). On-The-Go Hyperspectral Imaging Under Field Conditions and Machine Learning for the Classification of Grapevine Varieties. Frontiers in Plant Science, 0. https://doi.org/10.3389/fpls.2018.01102

Howlader, K. C., Satu, Md. S., Awal, Md. A., Islam, Md. R., Islam, S. M. S., Quinn, J. M. W., & Moni, M. A. (2022). Machine learning models for classification and identification of significant attributes to detect type 2 diabetes. Health Information Science and Systems, 10(1), 2. https://doi.org/10.1007/s13755-021-00168-2

Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S., Mujumdar, S., Afzal, S., Sharma Mittal, R., & Munigala, V. (2020). Overview and Importance of Data Quality for Machine Learning Tasks. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 3561-3562. https://doi.org/10.1145/3394486.3406477

Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised Machine Learning: A Brief Primer. Behavior Therapy, 51(5), 675-687. https://doi.org/10.1016/j.beth.2020.05.002

Lu, Y., Chen, D., Olaniyi, E., & Huang, Y. (2022). Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review. Computers and Electronics in Agriculture, 200, 107208. https://doi.org/10.1016/j.compag.2022.107208

Mochida, K., Koda, S., Inoue, K., & Nishii, R. (2018). Statistical and Machine Learning Approaches to Predict Gene Regulatory Networks From Transcriptome Datasets. Frontiers in Plant Science, 9, 1770. https://doi.org/10.3389/fpls.2018.01770

Moghimi, A., Yang, C., Miller, M. E., Kianian, S. F., & Marchetto, P. M. (2018). A Novel Approach to Assess Salt Stress Tolerance in Wheat Using Hyperspectral Imaging. Frontiers in Plant Science, 10, 1182. https://doi.org/10.3389/fpls.2018.01182

Mohammadi-Dehcheshmeh, M., Niazi, A., Ebrahimi, M., Tahsili, M., Nurollah, Z., Ebrahimi Khaksefid, R., Ebrahimi, M., & Ebrahimie, E. (2018). Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis. Frontiers in Plant Science, 9, 1550. https://doi.org/10.3389/fpls.2018.01550

Nagano, S., Moriyuki, S., Wakamori, K., Mineno, H., & Fukuda, H. (2019). Leaf-Movement-Based Growth Prediction Model Using Optical Flow Analysis and Machine Learning in Plant Factory. Frontiers in Plant Science, 10, 227. https://doi.org/10.3389/fpls.2019.00227

Naik, N., & Purohit, S. (2017). Comparative Study of Binary Classification Methods to Analyze a Massive Dataset on Virtual Machine. Procedia Computer Science, 112, 1863-1870. https://doi.org/10.1016/j.procs.2017.08.232

Nazki, H., Yoon, S., Fuentes, A., & Park, D. S. (2019). Unsupervised Image Translation using Adversarial Networks for Improved Plant Disease Recognition (arXiv:1909.11915). arXiv. https://doi.org/10.48550/arXiv.1909.11915

Plant Village. (n.d.). GitHub. Retrieved from https://github.com/spMohanty/PlantVillage-Dataset

Shete, S., Srinivasan, S., & Gonsalves, T. A. (2020). TasselGAN: An Application of the Generative Adversarial Model for Creating Field-Based Maize Tassel Data. Plant Phenomics (Washington, D.C.), 2020, 8309605. https://doi.org/10.34133/2020/8309605

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition (arXiv:1409.1556). arXiv. https://doi.org/10.48550/arXiv.1409.1556

Tabosa de Oliveira, T., da Silva Neto, S. R., Teixeira, I. V., Aguiar de Oliveira, S. B., de Almeida Rodrigues, M. G., Sampaio, V. S., & Endo, P. T. (2022). A Comparative Study of Machine Learning Techniques for Multi-Class Classification of Arboviral Diseases. Frontiers in Tropical Diseases, 2, 769968. https://doi.org/10.3389/fitd.2021.769968

Xu, M., Yoon, S., Fuentes, A., Yang, J., & Park, D. S. (2022). Style-Consistent Image Translation: A Novel Data Augmentation Paradigm to Improve Plant Disease Recognition. Frontiers in Plant Science, 12, 773142. https://doi.org/10.3389/fpls.2021.773142

Zhang, N., Rao, R. S. P., Salvato, F., Havelund, J. F., Møller, I. M., Thelen, J. J., & Xu, D. (2018). MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants. Frontiers in Plant Science, 9, 634. https://doi.org/10.3389/fpls.2018.00634

Published

13-02-2023

How to Cite

Albert, E. T. A. ., Bille, N. H., & Leonard, N. M. E. (2023). Improvement of plant disease classification accuracy with generative model-synthesized training datasets. Research in Biotechnology, 14, 1–11. https://doi.org/10.25081/rib.2023.v14.8214

Issue

Section

Articles