Current trends and future directions of hydroponics in urban agriculture: A competent technology for food production and wastewater management

Authors

  • Shardesh Kumar Chaurasia Eastern Youth Empirical Society, Gorakhpur-273001, Uttar Pradesh, India, Present address: Patanjali Research Foundation, Haridwar-249405, Uttarakhand, India
  • Navdeep Sharma Central University of Punjab, VPO-Ghudda, Bathinda-151401, Punjab, India https://orcid.org/0009-0009-0222-1839

DOI:

https://doi.org/10.25081/jsa.2025.v9.9662

Keywords:

Hydroponics, Horizontal and Vertical farming, Wastewater, Real-time monitoring

Abstract

The surge in the global population foresees a significant increase in the demand for food. Due to the scarcity of arable land and water resources crucial for agriculture, there is a shortfall in food production, posing a daunting challenge, nonetheless. Specific technological advancements in agriculture must be integrated to mitigate this pressing issue. These technologies aim to conserve or recycle water, positively influencing food production and accessibility. One such technology is hydroponics, which operates without soil and minimizes water consumption. It efficiently uses horizontal and vertical space, demonstrating the potential to generate higher yields than traditional farming methods. Its global traction stems from its ability to optimize resource management, facilitate year-round crop cultivation, and reduce susceptibility to pest infestations. In addition, hydroponics gains a notable edge over conventional farming techniques by offering the capability for real-time monitoring of environmental variables. Alleviating the strain on agricultural resources and bolstering food security on a global scale is a promise that the adoption of hydroponics holds, as a result.

Downloads

Download data is not yet available.

References

Abad, M., Noguera, P., Puchades, R., Maquieira, A., & Noguera, V. (2002). Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology, 82(3), 241-245. https://doi.org/10.1016/S0960-8524(01)00189-4

Alimuddin, Subrata, D. M., Nurmayulis, Khastini, R. O., & Arafiyah, R. (2018). Analysis of chilli plant physiology conventional system, greenhouse hydroponic utilization system using fuzzy logic. IOP Conference Series: Materials Science and Engineering, 434(1), 012219. https://doi.org/10.1088/1757-899X/434/1/012219

Aquino, M. A. Z. (2014). Manual de hidroponia (1st ed.). Universidad Nacional Autónoma de México. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/232367/Manual_de_hidroponia.pdf

Bosques, J. H. (2010). Curso Basico de Hidroponia. CA, USA: Lulu.

Chauhan, S., & Sharma, S. (2017). Hydroponic irrigation system- Feasible, suitable and sustainable method. International Journal of Innovations in Management, Engineering and Science, 5(3), 20-26.

Chen, R., Liu, H., Song, S., Sun, G., & Chen, R. (2015). Effects of light quality on growth and quality of lettuces in hydroponic. 2015 12th China International Forum on Solid State Lighting (SSLCHINA) (pp. 154-156). IEEE. https://doi.org/10.1109/SSLCHINA.2015.7360712

Cifuentes-Torres, L., Mendoza-Espinosa, L. G., Correa-Reyes, G., & Daesslé, L. W. (2021). Hydroponics with wastewater: A review of trends and opportunities. Water and Environment Journal, 35(1), 166-180. https://doi.org/10.1111/wej.12617

Cooper, A. (1976). Nutrient film technique of growing crops. London, UK: Grower Books.

Cuartero, J., & Fernández-Muñoz, R. (1998). Tomato and salinity. Scientia Horticulturae, 78(1-4), 83-125. https://doi.org/10.1016/S0304-4238(98)00191-5

Cui, L.-H., Luo, S.-M., Zhu, X.-Z., & Liu, Y.-H. (2003). Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics. Journal of Environmental Sciences, 15(1), 75-82.

De Clercq, M., Vats, A., & Biel, A. (2018). Agriculture 4.0: The future of farming technology. World Government Summit. Retrieved from https://www.oliverwyman.com/content/dam/oliverwyman/v2/publications/2021/apr/agriculture-4-0-the-future-of-farming-technology.pdf

Dubey, N., & Nain, V. (2020). Hydroponic-The future of farming. International Journal of Environment, Agriculture and Biotechnology, 5(4), 857-864. https://doi.org/10.22161/ijeab.54.2

Ezzahoui, I., Abdelouahid, R. A., Taji, K., & Marzak, A. (2021). Hydroponic and aquaponic farming: Comparative study based on Internet of Things (IoT) technologies. Procedia Computer Science, 191, 499-504. https://doi.org/10.1016/j.procs.2021.07.064

FAO. (2009). How to feed the world in 2050. Paper presented at the High-Level Expert Forum, Rome, Italy. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

Filipović, A. (2020). Water, plant, and soil relation under stress situations. In R. S. Meena & R. Datta (Eds.), Soil Moisture Importance London, UK: IntechOpen Limited. https://doi.org/10.5772/intechopen.93528

Fortune Business Insights. (2023). Hydroponics Market Size, Industry Share, & Forecast 2030. Retrieved from https://www.fortunebusinessinsights.com/hydroponics-market-102275

Gebeyehu, A., Shebeshe, N., Kloos, H., & Belay, S. (2018). Suitability of nutrients removal from brewery wastewater using a hydroponic technology with Typha latifolia. BMC Biotechnology, 18(74), 1-13. https://doi.org/10.1186/s12896-018-0484-4

Gizas, G., & Savvas, D. (2007). Particle size and hydraulic properties of pumice affect growth and yield of greenhouse crops in soilless culture. HortScience, 42(5), 1274-1280. https://doi.org/10.21273/HORTSCI.42.5.1274

Grand View Research. (2021). Hydroponics Market Size & Share Report, 2021-2028. Retrieved from https://www.grandviewresearch.com/industry-analysis/hydroponicsmarke

Grand View Research. (2024). Hydroponics Market Size, Share and Growth Report, 2030.. Retrieved from https://www.grandviewresearch.com/industry-analysis/hydroponics-market/request/rs1

Graves, C. J., & Hurd, R. G. (1983). Intermittent solution circulation in the nutrient film technique. Acta Horticulturae, 133, 47-52. https://doi.org/10.17660/ActaHortic.1983.133.5

Gruda, N. S. (2019). Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy, 9(6), 298. https://doi.org/10.3390/agronomy9060298

Jensen, M. H., & Collins, W. L. (1985). Hydroponic vegetable production. In J. Janick (Ed.), Horticultural Reviews (Vol. 7, pp. 483-558). Hoboken, New Jersey: Wiley. https://doi.org/10.1002/9781118060735.ch10

Kao, T. C. (1991). The Dynamic Root Floating Hydroponic Technique: Year-round Production of Vegetables in ROC on Taiwan. Taipei, Taiwan: Food and Fertilizer Technology Center.

Karne, H., Iyer, V., Joshi, S., Diwan, S., Gole, M., Sunthankar, S., & Phansalkar, S. (2023). Hydroponics: A review of modern growing techniques. European Chemical Bulletin, 12(4), 11231-11256. https://doi.org/10.48047/ecb/2023.12.si4.1016

Khan, S., Purohit, A., & Vadsaria, N. (2021) Hydroponics: current and future state of the art in farming. Journal of Plant Nutrition, 44(10), 1515-1538. https://doi.org/10.1080/01904167.2020.1860217

Kim, H. J., Kim, W. K., Roh, M. Y., Kang, C. I., Park, J. M., & Sudduth, K. A. (2013). Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Computers and Electronics in Agriculture, 93, 46-54. https://doi.org/10.1016/j.compag.2013.01.011

Kozai, T. (2018). Smart plant factory: The Next Generation Indoor Vertical Farms. Singapore: Springer. https://doi.org/10.1007/978-981-13-1065-2

Magwaza, S. T., Magwaza, L. S., Odindo, A. O., & Mditshwa, A. (2020). Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. Science of the Total Environment, 698, 134154. https://doi.org/10.1016/j.scitotenv.2019.134154

Malik, A., Iqbal, K., Aziem, S., Mahato, P., & Negi, A. K. (2014). A review on the science of growing crops without soil (soilless culture)- A novel alternative for growing crops. International Journal of Agriculture and Crop Sciences, 7(11), 833-842.

Mandal, R. (2023). Top 10 hydroponics companies in India. Times of Agriculture: E-Magazine. Retrieved from https://timesofagriculture.in/top-hydroponics-companies-in-india/

Nederhoff, E. M., & Stanghellini, C. (2010). Water use efficiency of tomatoes-in greenhouses and hydroponics. Practical Hydroponics & Greenhouses, 115, 52-59.

Olle, M., Ngouajio, M., & Siomos, A. (2012). Vegetable quality and productivity as influenced by growing medium: A review. Agriculture, 99(4), 399-408.

Othman, Y., Bataineh, K., Al-Ajlouni, M., Alsmairat, N., Ayad, J., Shiyab, S., Qarallah, B., & St. Hilaire, R. (2019). Soilless culture: Management of growing substrate, water, nutrient, salinity, microorganism and product quality. Fresenius Environmental Bulletin, 28(4), 3249-3260.

Pant, T., Agarwal, A., Bhoj, A., Prakash, O., & Dwivedi, S. K. (2018). Vegetable cultivation under hydroponics in Himalayas: Challenges and opportunities. Defence Life Science Journal, 3(2), 111-119. https://doi.org/10.14429/dlsj.3.12575

Park, J. B., Craggs, R. J., & Sukias, J. P. (2008). Treatment of hydroponic wastewater by denitrification filters using plant prunings as the organic carbon source. Bioresource Technology, 99(8), 2711-2716. https://doi.org/10.1016/j.biortech.2007.07.009

Prazeres, A. R., Albuquerque, A., Luz, S., Jerónimo, E., & Carvalho, F. (2017). Hydroponic system: A promising biotechnology for food production and wastewater treatment. In A. M. Grumezescu (Ed.), Food biosynthesis (pp. 317-350) Cambridge, US: Academic Press. https://doi.org/10.1016/B978-0-12-811372-1.00011-7

Rana, S., Bag, S. K., Golder, D., Roy, S. M., Pradhan, C., & Jana, B. B. (2011). Reclamation of municipal domestic wastewater by aquaponics of tomato plants. Ecological Engineering, 37(6), 981-988. https://doi.org/10.1016/j.ecoleng.2011.01.009

Raviv, M., Krasnovsky, A., Medina, S., & Reuveni, R. (1998). Assessment of various control strategies for recirculation of greenhouse effluents under semi-arid conditions. The Journal of Horticultural Science and Biotechnology, 73(4), 485-491. https://doi.org/10.1080/14620316.1998.11511003

Reetika, Chauhan, C., Singh, G., Shubham, & Kaushal, S. (2024). Wastewater hydroponics: Foundations, advancements and prospects for pollutant elimination and food production. International Journal of Research in Agronomy, 7(S4), 201-204. https://doi.org/10.33545/2618060X.2024.v7.i4Sc.587

Rogers, M. A. (2017). Organic vegetable crop production in controlled environments using soilless media. HortTechnology, 27(2), 166-170. https://doi.org/10.21273/HORTTECH03352-16

Saaid, M. F., Yahya, N. A. M., Noor, M. Z. H., & Ali, M. S. A. M. (2013). A development of an automatic microcontroller system for deep water culture (DWC). 2013 IEEE 9th International Colloquium on Signal Processing and its Applications (pp. 328-332). IEEE. https://doi.org/10.1109/CSPA.2013.6530066

Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R., & Cesco, S. (2019). Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science, 10, 923. https://doi.org/10.3389/fpls.2019.00923

Sardare, M. D., & Admane, S. V. (2013). A review on plant without soil-hydroponics. International Journal of Research in Engineering and Technology, 2(3), 299-304.

Savvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry-A review. European Journal of Horticultural Science, 83(5), 280-293. https://doi.org/10.17660/eJHS.2018/83.5.2

Savvas, D., & Passam, H. (2002). Hydroponic production of vegetables and ornamentals. Athens, Greece: Embryo Publications.

Saxena, P., & Bassi, A. (2013). Removal of nutrients from hydroponic greenhouse effluent by alkali precipitation and algae cultivation method. Journal of Chemical Technology & Biotechnology, 88(5), 858-863. https://doi.org/10.1002/jctb.3912

Siddaq, A., Tariq, M. O., Zehra, A., & Malik, S. (2019). ACHPA: A sensor-based system for automatic environmental control in hydroponics. Food Science and Technology, 40(3), 671-680. https://doi.org/10.1590/fst.13319

Singh, H., & Dunn, B. (2016). Electrical conductivity and pH guide for hydroponics. Oklahoma Cooperative Extension Service. Retrieved from https://shareok.org/bitstream/handle/11244/331022/oksa_HLA-6722_2016-10.pdf?sequence=1

Sweat, M., Tyson, R., & Hochmuth, R. (2004). Building a floating hydroponic garden: HS943/HS184, Rev. 9/2003. EDIS, 2004(1). https://doi.org/10.32473/edis-hs184-2003

Tatas, K., Al-Zoubi, A., Christofides, N., Zannettis, C., Chrysostomou, M., Panteli, S., & Antoniou, A. (2022). Reliable IoT-based monitoring and control of hydroponic systems. Technologies, 10(1), 26. https://doi.org/10.3390/technologies10010026

Truong, P. N., & Hart, B. (2001). Vetiver system for wastewater treatment. Technical Bulletin No. 2001/21, Pacific Rim Vetiver Network, Office of the Royal Development Projects Board, Bangkok (Thailand).

Turner, B. (2008). How hydroponics works. HowStuffWorks. Retrieved from https://home.howstuffworks.com/lawn-garden/professional-landscaping/hydroponics.htm

United Nations. (2018). Goal 11: Make cities inclusive, safe, resilient, and sustainable. Retrieved from https://www.un.org/sustainabledevelopment/cities/

United Nations. (2019). (2019). World urbanization prospects: The 2018 revision. United Nations, Department of Economic and Social Affairs, Population Division. Retrieved from https://population.un.org/wup/assets/WUP2018-Report.pdf

van Delden, S. H., SharathKumar, M., Butturini, M., Graamans, L. J. A., Heuvelink, E., Kacira, M., Kaiser, E., Klamer, R. S., Klerkx, L., Kootstra, G., Loeber, A., Schouten, R. E., Stanghellini, C., van Ieperen, W., Verdonk, J. C., Vialet-Chabrand, S., Woltering, E. J., van de Zedde, R., Zhang, Y., … Marcelis, L. F. M. (2021). Current status and future challenges in implementing and upscaling vertical farming systems. Nature Food, 2(12), 944-956. https://doi.org/10.1038/s43016-021-00402-w

Velazquez-Gonzalez, R. S., Garcia-Garcia, A. L., Ventura-Zapata, E., Barceinas-Sanchez, J. D. O., & Sosa-Savedra, J. C. (2022). A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations. Agriculture, 12(5), 646. https://doi.org/10.3390/agriculture12050646

Vinci, G., & Rapa, M. (2019). Hydroponic cultivation: Life cycle assessment of substrate choice. British Food Journal, 121(8), 1801-1812. https://doi.org/10.1108/BFJ-02-2019-0112

Worku, A., Tefera, N., Kloos, H., & Benor, S. (2018). Bioremediation of brewery wastewater using hydroponics planted with vetiver grass in Addis Ababa, Ethiopia. Bioresources and Bioprocessing, 5(39), 1-12. https://doi.org/10.1186/s40643-018-0225-5

World Bank Group. (2018). Urban population (% of total population). Retrieved from https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS

Yanes, A., Abbasi, R., Martinez, P., & Ahmad, R. (2022). Digital twinning of hydroponic grow beds in intelligent aquaponic systems. Sensors, 22(19), 7393. https://doi.org/10.3390/s22197393

Published

12-09-2025

How to Cite

Chaurasia, S. K., & Sharma, N. (2025). Current trends and future directions of hydroponics in urban agriculture: A competent technology for food production and wastewater management. Journal of Scientific Agriculture, 9, 177–188. https://doi.org/10.25081/jsa.2025.v9.9662

Issue

Section

Articles