Effect of follicle ablation before ovum pick-up in Girolando cattle
DOI:
https://doi.org/10.25081/jsa.2025.v9.9602Keywords:
Antral follicle count, Follicular development, Bos taurus, Bos indicus, Ovum pick-up, Cumulus-oocyte complex gradeAbstract
The present study characterized the effect of follicle ablation (FA) intervals on the follicular population and the quantity and quality of cumulus-oocyte complexes (COCs) from 1/2 and 1/4 Girolando donors (n=125 and n=110, respectively) at Ovum Pick-Up (OPU). The timing for that FA has not been definitively established. Our hypothesis was that FA in 1/2 and 1/4 blood Girolando donors performed 48 hours prior to OPU provided more and higher quality COCs than at 72 hours post-FA. To test this hypothesis, FA performed 48 h or 72 h before OPU, and the ovarian follicular population (grouped by size) and quality (grade I-IV) of COCs recovered from OPU were evaluated. The FA 48 h and 72 h groups had a greater estimated number of medium-sized follicles (more developed) compared with the control group without FA (18.39±1.42, 14.98±1.42, and 10.84±1.42 follicles, respectively, P<0.01) at OPU. Furthermore, there was a greater number of highest-quality COCs at FA 48 h than at FA 72 h and control (2.09±0.31, P= 0.004, 1.11±0.31, and 0.92±0.31 COCs, respectively). In comparison, 1/2 Girolando had greater counts of medium (18.3±2.02, P=0.05) and total follicles (33.34±2.67, P=0.02) and grade IV COC (5.52±0.64, P<0.01) than 1/4 Girolando (11.35±2.02, 22.56±2.67, 0.77±0.64, respectively). The association of FA with OPU on 1/2 and 1/4 Girolando has advantageous effects, resulting in the aspiration of more developed follicles and better-quality oocytes. Besides that, 1/2 Girolando has a greater follicular count than 1/4 Girolando, although these crosses respond similarly to FA. Overall, FA improves OPU outcomes.
Downloads
References
Adams, G. P. (1999). Comparative patterns of follicle development and selection in ruminants. Journal of Reproduction and Fertility Supplement, 54, 17-32.
Adona, P. R., Guemra, S., Fernandes, T. M., Ferreira, M. B., de Bem, T. H. C., & dos Santos Miranda, M. (2020). In vitro fertilization: productivity of donors of different bovine breeds. Tropical Animal Health and Production, 52(5), 2749-2752. https://doi.org/10.1007/s11250-020-02303-9
Alvarez, P., Spicer, L. J., Chase, C. C., Jr., Payton, M. E., Hamilton, T. D., Stewart, R. E., Hammond, A. C., Wettemann, R. P. (2000). Ovarian and endocrine characteristics during an estrous cycle in Angus, Brahman, and Senepol cows in a subtropical environment. Journal of Animal Science, 78(5), 1291-1302. https://doi.org/10.2527/2000.7851291x
Bergfelt, D. R., Lightfoot, K. C., & Adams, G. P. (1994). Ovarian synchronization following ultrasound-guided transvaginal follicle ablation in heifers. Theriogenology, 42(6), 895-907. https://doi.org/10.1016/0093-691X(94)90113-W
Blondin, P., & Sirard, M. A. (1995). Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Molecular Reproduction and Development, 41(1), 54-62. https://doi.org/10.1002/mrd.1080410109
Blondin, P., Vigneult, C., Nivet, A., & Sirard, M. (2012). Improving oocyte quality in cows and heifers - What have we learned so far? Animal Reproduction, 9, 281-289.
Bó, G. A., & Mapletoft, R. J. (2018). Embryo transfer technology in cattle. In H. Niemann & C. Wrenzycki (Eds.), Animal Biotechnology 1: Reproductive Biotechnologies (pp. 107-133). Cham, Switzerland: Springer International Publishing.
Cardoso, C. J. T., Lima, A. C. B. D., Silva, W. A. L. D., Souza-Cáceres, M. B., Pereira, D. M., Oliveira, M. V. M. D., Nogueira, E., Melo-Sterza, F. d. A. (2019). Suplementação de fêmeas girolando com linhaça: efeitos sobre contagem de folículos antrais, qualidade oocitária, parâmetros nutricionais e metabólitos plasmáticos. Semina: Ciências Agrárias, 40(6), 2637-2650. https://doi.org/10.5433/1679-0359.2019v40n6p2637
Cooke, R. F., Daigle, C. L., Moriel, P., Smith, S. B., Tedeschi, L. O., & Vendramini, J. M. B. (2020). Cattle adapted to tropical and subtropical environments: social, nutritional, and carcass quality considerations. Journal of Animal Science, 98(2). https://doi.org/10.1093/jas/skaa014
Daltro, D. dos S., da Silva, M. V. G. B., da Gama, L. T., Machado, J. D., Kern, E. L., Campos, G. S., Panetto, J. C. do C., & Cobuci, J. A. (2020). Estimates of genetic and crossbreeding parameters for 305-day milk yield of Girolando cows. Italian Journal of Animal Science, 19(1), 86-94. https://doi.org/10.1080/1828051X.2019.1702110
de Wit, A. A. C., Wurth, Y. A., & Kruip, T. A. M. (2000). Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex1. Journal of Animal Science, 78(5), 1277-1283. https://doi.org/10.2527/2000.7851277x
Filho, A. S. S., Oliveira, M. A. L., Caldas, J. G. L., Lima, P. F., & Donato, I.V. (2001). Ovarian Follicular Dynamics of five-eighths Girolando Cows. Reproduction in Domestic Animals, 36(3-4), 207-210. https://doi.org/10.1046/j.1439-0531.2001.00300.x
Ginther, O. J., Kastelic, J. P., & Knopf, L. (1989). Composition and characteristics of follicular waves during the bovine estrous cycle. Animal Reproduction Science, 20(3), 187-200. https://doi.org/10.1016/0378-4320(89)90084-5
Gomez-León, V. E., Ginther, O. J., Araujo, E. R., Guimarães, J. D., & Wiltbank, M. C. (2019). Hormonal mechanisms regulating follicular wave dynamics I: Comparison of follicle growth profiles under different physiological conditions in heifers. Theriogenology, 123, 194-201. https://doi.org/10.1016/j.theriogenology.2018.09.006
IBGE. (2021). Instituto Brasileiro de Geografia e Estatistica [Brazilian Institute of Geography and Statistics]. Produção de Leite [Milk Production]. Retrieved from https://www.ibge.gov.br/explica/producao-agropecuaria/leite/br
Kruip, T. A., & Dieleman, S. J. (1982). Macroscopic classification of bovine follicles and its validation by micromorphological and steroid biochemical procedures. Reproduction Nutrition Development, 22(3), 465-473. https://doi.org/10.1051/rnd:19820403
Lonergan, P., Monaghan, P., Rizos, D., Boland, M. P., & Gordon, I. (1994). Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro. Molecular Reproduction and Development, 37(1), 48-53. https://doi.org/10.1002/mrd.1080370107
Machatkova, M., Krausova, K., Jokesova, E., & Tomanek, M. (2004). Developmental competence of bovine oocytes: effects of follicle size and the phase of follicular wave on in vitro embryo production. Theriogenology, 61(2), 329-335. https://doi.org/10.1016/S0093-691X(03)00216-4
Monteiro, C. A. S., Saraiva, H. F. R. de A., Leal, G. R., Camargo, A. J. dos R., Serapião, R. V., Ferreira, A. M. R., Rodrigues, A. L. R., Nogueira, L. A. G., & Oliveira, C. S. (2018). Breed composition does not influence the performance of Holstein-Gyr crossbred as oocyte donors for OPU/IVP. Animal Reproduction, 15(1), 71-74. https://doi.org/10.21451/1984-3143-2017-AR978
Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1-3), 57-69. https://doi.org/10.1016/j.livsci.2010.02.011
Penitente-Filho, J. M., Jimenez, C. R., Zolini, A. M., Carrascal, E., Azevedo, J. L., Silveira, C. O., Oliveira, F. A., & Torres, C. A. A. (2015). Influence of corpus luteum and ovarian volume on the number and quality of bovine oocytes. Animal Science Journal, 86(2), 148-152. https://doi.org/10.1111/asj.12261
Pontes, J. H. F., Silva, K. C. F., Basso, A. C., Rigo, A. G., Ferreira, C. R., Santos, G. M. G., Sanches, B. V., Porcionato, J. P. F., Vieira, P. H. S., Faifer, F. S., Sterza, F. A. M., Schenk, J. L., & Seneda, M. M. (2010). Large-scale in vitro embryo production and pregnancy rates from Bos taurus, Bos indicus, and indicus-taurus dairy cows using sexed sperm. Theriogenology, 74(8), 1349-1355. https://doi.org/10.1016/j.theriogenology.2010.06.004
Sartori, R., Bastos, M. R., Baruselli, P. S., Gimenes, L. U., Ereno, R. L., & Barros, C. M. (2010). Physiological differences and implications to reproductive management of Bos taurus and Bos indicus cattle in a tropical environment. Society for Reproduction and Fertility Supplement, 67, 357-375. https://doi.org/10.7313/upo9781907284991.028
Sartori, R., Gimenes, L. U., Monteiro, P. L. J., Jr., Melo, L. F., Baruselli, P. S., & Bastos, M. R. (2016). Metabolic and endocrine differences between Bos taurus and Bos indicus females that impact the interaction of nutrition with reproduction. Theriogenology, 86(1), 32-40. https://doi.org/10.1016/j.theriogenology.2016.04.016
Silva, M. V. G. B., Martins, M. F., Ferreira Junior, E., Panetto, J. C. do C., & Machado, M. A. (2022). Programa de melhoramento genético da raça Girolando - sumário de touros - resultado do teste de progênie (avaliação genética/genômica) - Junho/2022 [Genetic improvement program for the Girolando breed – summary of bulls – result of the progeny test (genetic/genomic evaluation) – June/2022]. Juiz de Fora: Embrapa Gado de Leite [Embrapa Dairy Cattle].
Sirard, M. A., Picard, L., Dery, M., Coenen, K., & Blondin, P. (1999). The time interval between FSH administration and ovarian aspiration influences the development of cattle oocytes. Theriogenology, 51(4), 699-708. https://doi.org/10.1016/S0093-691X(99)00019-9
Vassena, R., Mapletoft, R. J., Allodi, S., Singh, J., & Adams, G. P. (2003). Morphology and developmental competence of bovine oocytes relative to follicular status. Theriogenology, 60(5), 923-932. https://doi.org/10.1016/S0093-691X(03)00101-8
Viana, J. H. M., Palhao, M. P., Siqueira, L. G. B., Fonseca, J. F., & Camargo, L. S. A. (2010). Ovarian follicular dynamics, follicle deviation, and oocyte yield in Gyr breed (Bos indicus) cows undergoing repeated ovum pick-up. Theriogenology, 73(7), 966-972. https://doi.org/10.1016/j.theriogenology.2009.11.025
Viana, J. H. M., Siqueira, L. G. B., Palhao, M. P., & Camargo, L. S. A. (2012). Features and perspectives of the Brazilian in vitro embryo industry. Animal Reproduction, 9(1), 12-18.
Vieira, M. T., Daltro, D. dos S., & Cobuci, J. A. (2022). Breed and heterosis effects on reproduction and production traits of Girolando cows. Brazilian Journal of Animal Science, 51, e20200266. https://doi.org/10.37496/rbz5120200266
Watson, A. J. (2007). Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. Journal of Animal Science, 85(13 Suppl), E1-E3. https://doi.org/10.2527/jas.2006-432
Wildman, E. E., Jones, G. M., Wagner, P. E., Boman, R. L., Troutt, H. F., Jr., & Lesch, T. N. (1982). A Dairy Cow Body Condition Scoring System and Its Relationship to Selected Production Characteristics. Journal of Dairy Science, 65(3), 495-501. https://doi.org/10.3168/jds.S0022-0302(82)82223-6
Wrenzycki, C. (2018). In vitro production of (farm) animal embryos. In H. Niemann & C. Wrenzycki (Eds.), Animal biotechnology 1: Reproductive biotechnologies (pp. 269-304) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-92327-7_12
Published
How to Cite
Issue
Section
Copyright (c) 2025 Paula V. Marchioretto, Sandra L. Rodriguez-Zas, Brad R. Lindsey, Matthew B. Wheeler

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.