Assisted reproductive technologies and genetic improvement strategies for enhancing livestock production and food security in Tropical East Africa: A review

Authors

DOI:

https://doi.org/10.25081/jsa.2025.v9.9599

Keywords:

Assisted Reproductive Technologies, Livestock Productivity, Tropical Agriculture, Food Security

Abstract

Despite an increase in global food availability, food insecurity remains a pressing global challenge affecting millions across developed and developing nations. This issue is particularly severe in developing countries in tropical regions, where harsh climatic conditions, low agricultural productivity, and limited access to resources intensify the challenge of food insecurity. Africa exemplifies these challenges, with approximately 20% of the total population undernourished. East Africa is no stranger to these statistics with 31.8% of the country’s children under 5 years old being malnourished. Many livestock production systems in tropical East Africa operate significantly below their potential due to constraints including climate vulnerability, endemic diseases, and low genetic production capacity of indigenous breeds. Improving livestock productivity has been an area of focus for improving food security for many years. Applying our knowledge of environmental adaptations such as heat tolerance mechanisms like the SLICK gene in cattle and fat tails in sheep and disease resistance traits like trypanotolerance is a foundational step in the development of breed improvement programs for the tropics. Crossbreeding programs have utilized this knowledge for decades resulting in great success stories such as the Girolando cattle of Brazil, which are responsible for producing 80% of the country’s milk today. With the development and use of assisted reproductive technologies (ARTs) like artificial insemination, in vitro fertilization & embryo transfer we have the ability to achieve genetic gain at an unprecedented speed. Many cases have demonstrated promising applications of these technologies, with one such study reporting IVF and ET implementation in Kenyan dairy herds could increase monetary gain by 184% while reducing generation intervals by 47%. Overall, strategic implementation of genetic improvement programs, when adapted to the diverse livestock production systems of the developing tropics hold the key to significantly enhancing livestock productivity, improving food security, and overall contributing to more sustainable agricultural systems in East Africa.

Downloads

Download data is not yet available.

References

Alarcón, M. A., Galina, C. S., Corro, M. D., & Asprón, M. A. (2010). Embryo transfer, a useful technique to be applied in small community farms? Tropical Animal Health and Production, 42(6), 1135-1141. https://doi.org/10.1007/s11250-010-9536-z

Almeida, A. M. (2011). The Damara in the context of Southern Africa fat-tailed sheep breeds. Tropical Animal Health and Production, 43(7), 1427-1441. https://doi.org/10.1007/s11250-011-9868-3

Anonymous. (2024). About NAIC. United Republic of Tanzania. Retrieved from https://www.naic.go.tz/about_us#history

Antwi, J., Quaidoo, E., Ohemeng, A., & Bannerman, B. (2022). Household food insecurity is associated with child's dietary diversity score among primary school children in two districts in Ghana. Food & Nutrition Research, 66, 7715. https://doi.org/10.29219/fnr.v66.7715

Aquino, C. (2023). Livestock and products annual: Brazil (Report No. BR2023-0017). U.S. Department of Agriculture, Foreign Agricultural Service. Retrieved from https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Livestock%20and%20Products%20Annual_Brasilia_Brazil_BR2023-0017.pdf

Assenga, E. A., & Kayunze, K. A. (2020). Socio-economic and Demographic Determinants of Food Security in Chamwino District, Tanzania. Tanzania Journal of Population Studies and Development, 27(1), 82-105.

Baker, R. L. (1998). Genetic resistance to endoparasites in sheep and goats: A review of genetic resistance to gastrointestinal nematode parasites in sheep and goats in the tropics and evidence for resistance in some sheep and goat breeds in sub-humid coastal Kenya. Animal Genetic Resources Information, 24, 13-30. https://doi.org/10.1017/S1014233900001103

Bangert, E. A., Allen, C., Chota, A. C., Msuta, G., Mbisha, E., & Wheeler, M. B. (2024). Assessment of challenges and recommendations for success when implementing assisted reproductive technology programs in developing countries in the tropics (Tanzania). Animal Science Cases, 2024, 12. https://doi.org/10.1079/animalsciencecases.2024.0012

Baruselli, P. S., Catussi, B. L. C., de Abreu, L. Â., Elliff, F. M., da Silva, L. G., & Batista, E. O. S. (2019). Challenges to increase the AI and ET markets in Brazil. Animal Reproduction, 16(3), 364-375. https://doi.org/10.21451/1984-3143-AR2019-0050

Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 97(1), 471-486. https://doi.org/10.3168/jds.2013-6611

Bishop, S. C. (2012). Possibilities to breed for resistance to nematode parasite infections in small ruminants in tropical production systems. Animal, 6(5), 741-747. https://doi.org/10.1017/S1751731111000681

Bogale, A., & Abebaw, A. (2009). Household level determinants of food insecurity in rural areas of Dire Dawa, eastern Ethiopia. African Journal of Food, Agriculture, Nutrition and Development, 9(9), 1914-1926. https://doi.org/10.18697/ajfand.30.3740

Burney, J. A., Naylor, R. L., & Postel, S. L. (2013). The case for distributed irrigation as a development priority in sub-Saharan Africa. Proceedings of the National Academy of Sciences, 110(31), 12513-12517. https://doi.org/10.1073/pnas.1203597110

Cabrera, V. E. (2022). Economics of using beef semen on dairy herds. JDS Communications, 3(2), 147-151. https://doi.org/10.3168/jdsc.2021-0155

Cafiero, C., Nord, M., Viviani, S., DelGrossi, M., Ballard, T., Kepple, A., Miller, M., & Nwosu, C. (2016). Methods for estimating comparable prevalence rates of food insecurity experienced by adults throughout the world (VoH Technical Report No. 1/2016). Food and Agriculture Organization of the United Nations (FAO). https://doi.org/10.13140/RG.2.1.5112.9207

Chilliard, Y., Ferlay, A., Faulconnier, Y., Bonnet, M., Rouel, J., & Bocquier, F. (2000). Adipose tissue metabolism and its role in adaptations to undernutrition in ruminants. Proceedings of the Nutrition Society, 59(1), 127-134. https://doi.org/10.1017/S002966510000015X

Contreras, D. A., Galina, C. S., & Chenoweth, P. (2021). Prospects for increasing the utilization of cattle embryo transfer by small-scale milk and meat producers in tropical regions. Reproduction in Domestic Animals, 56(12), 1479-1485. https://doi.org/10.1111/rda.14015

Cooke, R. F., Daigle, C. L., Moriel, P., Smith, S. B., Tedeschi, L. O., & Vendramini, J. M. B. (2020). Cattle adapted to tropical and subtropical environments: Social, nutritional, and carcass quality considerations. Journal of Animal Science, 98(2), skaa014. https://doi.org/10.1093/jas/skaa014

Cumming, I., Friend, A., & Aguma, C. O. (1994). Use of indigenous breeds of cattle and their crosses in Uganda as recipients for imported Bos taurus embryos. Tropical Animal Health and Production, 26(2), 119-126. https://doi.org/10.1007/BF02239914

Dalcin, V., Fischer, V., Daltro, D., Munchen Alfonzo, E. P., Stumpf, M., Kolling, G., Silva, M., & McManus, C. (2016). Physiological parameters for thermal stress in dairy cattle. Revista Brasileira de Zootecnia, 45, 458-465. https://doi.org/10.1590/S1806-92902016000800006

Daltro, D. d. S., Padilha, A. H., Silva, M. V. G. B. d., Kern, E. L., Santos, D. C. d. A., Panetto, J. C. d. C., Telo da Gama, L., & Cobuci, J. A. (2019). Heterosis in the lactation curves of Girolando cows with emphasis on variations of the individual curves. Journal of Applied Animal Research, 47(1), 85-95. https://doi.org/10.1080/09712119.2019.1575223

Degen, A. A., & Shkolnik, A. (1978). Thermoregulation in fat-tailed Awassi, a desert sheep, and in German mutton Merino, a mesic sheep. Physiological Zoology, 51(4), 333-339. https://doi.org/10.1086/physzool.51.4.30160957

Dikmen, S., Khan, F. A., Huson, H. J., Sonstegard, T. S., Moss, J. I., Dahl, G. E., & Hansen, P. J. (2014). The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. Journal of Dairy Science, 97(9), 5508-5520. https://doi.org/10.3168/jds.2014-8087

Duncanson, G. R. (1975). The Kenya National Artificial Insemination Service. World Animal Review, 16, 37-41. Food and Agriculture Organization of the United Nations (FAO). Retrieved from https://www.fao.org/4/x6500e/X6500E01.htm

Eguiguren-Velepucha, P. A., Chamba, J. A. M., Aguirre Mendoza, N. A., Ojeda-Luna, T. L., Samaniego-Rojas, N. S., Furniss, M. J., Howe, C., & Aguirre Mendoza, Z. H. (2016). Tropical ecosystems vulnerability to climate change in southern Ecuador. Tropical Conservation Science, 9, 1-17. https://doi.org/10.1177/1940082916668007

Elbeltagy, A. R. (2017). Sheep genetic diversity and breed differences for climate-change adaptation. In V. Sejian, R. Bhatta, J. Gaughan, P. K. Malik, S. M. K. Naqvi & R. Lal (Eds.), Sheep production adapting to climate change (pp. 149-171) Singapore: Springer. https://doi.org/10.1007/978-981-10-4714-5_6

Epstein, H. (1957). The fat-rumped sheep of East Africa. The East African Agricultural Journal, 23(1), 42-48. https://doi.org/10.1080/03670074.1957.11665118

FAO. (1996). Food and Agriculture Organization of the United Nations. Rome Declaration on World Food Security. World Food Summit, Rome, Italy.

FAO. (2023). Food and Agriculture Organization of the United Nations. The state of food security and nutrition in the world 2023: Urbanization, agrifood systems transformation and healthy diets across the rural-urban continuum (The State of Food Security and Nutrition in the World series). Food and Agriculture Organization of the United Nations. Retrieved from https://openknowledge.fao.org/server/api/core/bitstreams/1f66b67b-1e45-45d1-b003-86162fd35dab/content

FAO. (2024). Food and Agriculture Organization of the United Nations. Food outlook: Biannual report on global food markets (Food Outlook series). Food and Agriculture Organization of the United Nations. Retrieved from https://openknowledge.fao.org/items/0f49f297-4c2e-42c8-a152-adb89a727a01

Gallup, J. L., & Sachs, J. D. (2000). Agriculture, climate, and technology: Why are the tropics falling behind? American Journal of Agricultural Economics, 82(3), 731-737. http://www.jstor.org/stable/1244634

Gicheha, M. A.-O., Akidiva, I. C., & Cheruiyot, R. Y. (2019). Genetic and economic efficiency of integrating reproductive technologies in cattle breeding programme in Kenya. Tropical Animal Health and Production, 51(2), 473-475. https://doi.org/10.1007/s11250-018-1711-3

Giordani, F., Morrison, L. J., Rowan, T. G., De Koning, H. P., & Barrett, M. P. (2016). The animal trypanosomiases and their chemotherapy: A review. Parasitology, 143(14), 1862-1889. https://doi.org/10.1017/S0031182016001268

Global Nutrition Report. (2021). The state of global nutrition. Retrieved from https://media.globalnutritionreport.org/documents/Executive_summary_2021_Global_Nutrition_Report.pdf

Godfray, C., Beddington, J., Crute, I., Haddad, L., Lawrence, D., Muir, J., Pretty, J., Robinson, S., Thomas, S., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383

Habimana, V., Nguluma, A. S., Nziku, Z. C., Ekine-Dzivenu, C. C., Morota, G., Mrode, R., & Chenyambuga, S. W. (2023). Heat stress effects on milk yield traits and metabolites and mitigation strategies for dairy cattle breeds reared in tropical and sub-tropical countries [Review]. Frontiers in Veterinary Science, 10, 1121499. https://doi.org/10.3389/fvets.2023.1121499

Hamilton, K., Baron, M. D., Matsuo, K., & Visser, D. (2017). Rinderpest eradication: Challenges for remaining disease free and implications for future eradication efforts. Revue Scientifique et Technique, 36(2), 579-588. https://doi.org/10.20506/rst.36.2.2676

Hanotte, O., Ronin, Y., Agaba, M., Nilsson, P., Gelhaus, A., Horstmann, R., Sugimoto, Y., Kemp, S., Gibson, J., Korol, A., Soller, M., & Teale, A. (2003). Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N' Dama and susceptible East African Boran cattle. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7443-7448. https://doi.org/10.1073/pnas.1232392100

Hemerijckx, L.-M., Janusz, K., Van Emelen, S., Tumwesigye, S., Davis, J., Lwasa, S., & Van Rompaey, A. (2022). Food accessibility of different socioeconomic groups in sub-Saharan African cities: A mixed-method analysis in Kampala, Uganda. Food Security, 14(3), 677-694. https://doi.org/10.1007/s12571-021-01248-7

Hemme, T., & Otte, J. (2010). Status and prospects for smallholder milk production: A global perspective. FAO.

Herrero, M., Grace, D., Njuki, J., Johnson, N., Enahoro, D., Silvestri, S., & Rufino, M. C. (2013). The roles of livestock in developing countries. Animal, 7(s1), 3-18. https://doi.org/10.1017/S1751731112001954

Hikuepi Katjiuongua, S. N. (2014). Tanzania smallholder dairy value chain development: Situation analysis and trends. International Livestock Research Institute (ILRI). Retrieved from https://cgspace.cgiar.org/handle/10568/35693

Huson, H. J., Kim, E. S., Godfrey, R. W., Olson, T. A., McClure, M. C., Chase, C. C., Rizzi, R., O'Brien, A. M., Van Tassell, C. P., Garcia, J. F., & Sonstegard, T. S. (2014). Genome-wide association study and ancestral origins of the slick-hair coat in tropically adapted cattle. Frontiers in Genetics, 5, 101. https://doi.org/10.3389/fgene.2014.00101

IER. (2024). Institute for Energy Research. (2024, January 27). Danish farmers to be taxed for livestock emissions. Institute for Energy Research. Retrieved from https://www.instituteforenergyresearch.org/international-issues/danish-farmers-to-be-taxed-for-livestock-emissions/

Jiang, H., Wang, W., & Li, C. (2017). Innovation, practical benefits and prospects for the future development of automatic milking systems. Frontiers of Agricultural Science and Engineering, 4(1), 37-47. https://doi.org/10.15302/J-FASE-2016117

Jordt, T., Mahon, G. D., Touray, B. N., Ngulo, W. K., Morrison, W. I., Rawle, J., & Murray, M. (1986). Successful transfer of frozen N’Dama embryos from the Gambia to Kenya. Tropical Animal Health and Production, 18(2), 65-75. https://doi.org/10.1007/BF02359714

Juma, T. (2020). Artificial insemination of livestock. Livestock Kenya. Retrieved from https://livestockkenya.com/index.php/blog/general/111-artificial-insemination-of-livestock

Kabuni, K. T. (2017). Comparative study between fixed-time artificial insemination and natural mating on reproductive performance (conception and pregnancy rates) of Mpwapwa breed cows in Tanzania. Master’s Thesis, Massey University.

Kadzere, C. (2018). Environmentally smart animal agriculture and integrated advisory services ameliorate the negative effects of climate change on production. South African Journal of Animal Science, 48(5), 842-857. https://doi.org/10.4314/sajas.v48i5.5

KAGRC. (2025). Kenya Animal Genetic Resource Centre. Kenya Animal Genetic Resource Centre background. Kenya Animal Genetic Resource Centre. Retrieved October 31, 2024, from https://kagrc.go.ke/who-we-are/

Kairu-Wanyoike, S. W., Kiara, H., Heffernan, C., Kaitibie, S., Gitau, G. K., McKeever, D., & Taylor, N. M. (2014). Control of contagious bovine pleuropneumonia: Knowledge, attitudes, perceptions and practices in Narok district of Kenya. Preventive Veterinary Medicine, 115(3), 143-156. https://doi.org/10.1016/j.prevetmed.2014.03.029

Kay, R. N. B. (1997). Responses of African livestock and wild herbivores to drought. Journal of Arid Environments, 37(4), 683-694. https://doi.org/10.1006/jare.1997.0299

Kernbach-Wighton, G., Kijewski, H., Schwanke, P., Saur, P., & Sprung, R. (1998). Clinical and morphological aspects of death due to liquid nitrogen. International Journal of Legal Medicine, 111(4), 191-195. https://doi.org/10.1007/s004140050148

Kimura, S., Hatakeyama, T., Koutaka, T., Kubo, K., Morita, S., Eguchi, K., Saitoh, K., Yamauchi, K., Imai, S., Kashimura, A., Inenaga, T., & Matsumoto, H. (2022). PMEL p. Leu18del dilutes coat color of Kumamoto sub-breed of Japanese Brown cattle. BMC Genomics, 23(1), 694. https://doi.org/10.1186/s12864-022-08916-8

Kios, D. K. (2019). Adoption of embryo transfer in Kenya and its improvement through use of optimal FSH dosage during superovulation [Master’s thesis, University of Nairobi]. University of Nairobi Repository.

Kleen, J. L., & Guatteo, R. (2023). Precision livestock farming: What does it contain and what are the perspectives? Animals, 13(5), 779. https://doi.org/10.3390/ani13050779

Leak, S. G. A., Peregrine, A. S., Mulatu, W., Rowlands, G. J., & D'Leteren, G. (1996). Use of insecticide-impregnated targets for the control of tsetse flies (Glossina spp.) and trypanosomiasis occurring in cattle in an area of south-west Ethiopia with a high prevalence of drug-resistant trypanosomes. Tropical Medicine & International Health, 1(5), 599-609. https://doi.org/10.1111/j.1365-3156.1996.tb00085.x

Leite, J. H. G. M., Façanha, D. A. E., Costa, W. P., Chaves, D. F., Guilhermino, M. M., Silva, W. S. T., & Bermejo, L. A. (2018). Thermoregulatory responses related to coat traits of Brazilian native ewes: An adaptive approach. Journal of Applied Animal Research, 46(1), 353-359. https://doi.org/10.1080/09712119.2017.1302877

Lunogelo, H., Makene, F., & Gray, H. (2020). Dairy processing in Tanzania: Prospects for SME inclusion (ES/S0001352/1). The University of Edinburgh. Retrieved from https://www.cabi.org/cabebooks/ebook/20203298772

Madalena, F. E. (2002). Dairy animals: Bos indicus breeds and Bos indicus × Bos taurus crosses. In H. Roginski (Ed.), Encyclopedia of dairy sciences (pp. 576-585). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B0-12-227235-8/00746-X

Madalena, F. E. (2012). Animal breeding and development – South American perspective. Journal of Animal Breeding and Genetics, 129(3), 171-172. https://doi.org/10.1111/j.1439-0388.2012.01006.x

Mader, T. L., Davis, M. S., & Brown-Brandl, T. (2006). Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science, 84(3), 712-719. https://doi.org/10.2527/2006.843712x

Marchioretto, P. V., Rabel, R. A. C., Allen, C. A., Ole-Neselle, M. M. B., & Wheeler, M. B. (2023). Development of genetically improved tropical-adapted dairy cattle. Animal Frontiers, 13(5), 7-15. https://doi.org/10.1093/af/vfad050

Mbwana, H. A., Kinabo, J., Lambert, C., & Biesalski, H. K. (2017). Factors influencing stunting among children in rural Tanzania: An agro-climatic zone perspective. Food Security, 9(6), 1157-1171. https://doi.org/10.1007/s12571-017-0672-4

McManus, C., Paludo, G. R., Louvandini, H., Gugel, R., Sasaki, L. C. B., & Paiva, S. R. (2009). Heat tolerance in Brazilian sheep: Physiological and blood parameters. Tropical Animal Health and Production, 41(1), 95-101. https://doi.org/10.1007/s11250-008-9162-1

Mebratu, B., Fesseha, H., & Goa, E. (2020). Embryo transfer in cattle production and its principles and applications. Journal Name, 7(1), 40-54.

Mekonnen, Y. A., Gültas, M., Effa, K., Hanotte, O., & Schmitt, A. O. (2019). Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed.

M'Ikiugu, H., Tsuma, V., Muraya, J., & Mutiga, E. (2015). Bovine in-vitro embryo production and its contribution towards improved food security in Kenya. African Journal of Food, Agriculture, Nutrition and Development, 15(1), 9722-9741. https://doi.org/10.18697/ajfand.68.14040

Misselhorn, A. A. (2005). What drives food insecurity in southern Africa? A meta-analysis of household economy studies. Global Environmental Change, 15(1), 33-43. https://doi.org/10.1016/j.gloenvcha.2004.11.003

Mkenda, A. F. (2021). National sample census of agriculture 2019/20. Tanzania National Bureau of Statistics.

Mohapatra, A., & Shinde, A. (2018). Fat-tailed sheep-An important sheep genetic resource for meat production in tropical countries: An overview. Indian Journal of Small Ruminants, 24(1), 17. https://doi.org/10.5958/0973-9718.2018.00020.X

Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G., & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying candidate regions associated with fat deposition. BMC Genetics, 13, 10. https://doi.org/10.1186/1471-2156-13-10

Mueller, M. L., & Van Eenennaam, A. L. (2022). Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agriculture and Bioscience, 3(1), 13. https://doi.org/10.1186/s43170-022-00080-z

Murray, M., & Trail, J. C. M. (1984). Genetic resistance to animal trypanosomiasis in Africa. Preventive Veterinary Medicine, 2(1), 541-551. https://doi.org/10.1016/0167-5877(84)90100-4

Murray, M., Morrison, W. I., & Whitelaw, D. D. (1982). Host susceptibility to African trypanosomiasis: Trypanotolerance. In J. R. Baker & R. Muller (Eds.), Advances in parasitology (Vol. 21, pp. 1-68). Academic Press. https://doi.org/10.1016/S0065-308X(08)60274-2

Murray, M., Trail, J. C. M., Davis, C. E., & Black, S. J. (1984). Genetic resistance to African trypanosomiasis. The Journal of Infectious Diseases, 149(3), 311-319. https://doi.org/10.1093/infdis/149.3.311

Mutea, E., Hossain, M. S., Ahmed, A., & Ifejika Speranza, C. (2022). Shocks, socio-economic status, and food security across Kenya: Policy implications for achieving the Zero Hunger goal. Environmental Research Letters, 17(9), 094028. https://doi.org/10.1088/1748-9326/ac8be8

Muthini, D., Nzuma, J., & Nyikal, R. (2020). Farm production diversity and its association with dietary diversity in Kenya. Food Security, 12(5), 1107-1120. https://doi.org/10.1007/s12571-020-01030-1

Myers, C. A. (2020). Food insecurity and psychological distress: A review of the recent literature. Current Nutrition Reports, 9, 17. https://doi.org/10.1007/s13668-020-00309-1

Naziha, A., François, B., & Gley, K. (2004). Performance of the fat-tailed Barbarine sheep in its environment: Adaptive capacity to alternation of underfeeding and re-feeding periods. A review. Animal Research, 53(3), 165-176. https://doi.org/10.1051/animres:2004012

Nebel, R. L., & Jobst, S. M. (1998). Evaluation of systematic breeding programs for lactating dairy cows: A review. Journal of Dairy Science, 81(4), 1169-1174. https://doi.org/10.3168/jds.S0022-0302(98)75679-6

Neidhardt, R., Grell, H., Schrecke, W., & Jakob, H. (1996). Sustainable livestock farming in East Africa. Animal Research and Development, 43/44, 44-52.

Ojango, J. (2020). Mpwapwa. ILRI. Retrieved from http://agtr.ilri.cgiar.org/mpwapwa

Ombelet, W., & Van Robays, J. (2015). Artificial insemination history: Hurdles and milestones. Facts, Views & Vision in ObGyn, 7(2), 137-143.

Opadoyin, T. G. (2018). Current and future improvements in livestock nutrition and feed resources. In Y. Banu & T. Turgay (Eds.), Animal husbandry and nutrition (Ch. 7). London, United Kingdom: IntechOpen. https://doi.org/10.5772/intechopen.73088

Ortiz-Colón, G., Fain, S. J., Parés, I. K., Curbelo-Rodríguez, J., Jiménez-Cabán, E., Pagán-Morales, M., & Gould, W. A. (2018). Assessing climate vulnerabilities and adaptive strategies for resilient beef and dairy operations in the tropics. Climatic Change, 146(1), 47-58. https://doi.org/10.1007/s10584-017-2110-1

Osei-Amponsah, R., Dunshea, F. R., Leury, B. J., Cheng, L., Cullen, B., Joy, A., Abhijith, A., Zhang, M. H., & Chauhan, S. S. (2020). Heat stress impacts on lactating cows grazing Australian summer pastures on an automatic robotic dairy. Animals, 10(5), 869. https://doi.org/10.3390/ani10050869

Parkinson, T. J., & Morrell, J. M. (2019). Artificial insemination. In Veterinary reproduction and obstetrics (pp. 746-777). https://doi.org/10.1016/B978-0-7020-7233-8.00043-4

Paul, B. K., Koge, J., Maass, B. L., Notenbaert, A., Peters, M., Groot, J. C. J., & Tittonell, P. (2020). Tropical forage technologies can deliver multiple benefits in Sub-Saharan Africa: A meta-analysis. Agronomy for Sustainable Development, 40(4), 22. https://doi.org/10.1007/s13593-020-00626-3

Perkins, J. M., Nyakato, V. N., Kakuhikire, B., Tsai, A. C., Subramanian, S. V., Bangsberg, D. R., & Christakis, N. A. (2018). Food insecurity, social networks, and symptoms of depression among men and women in rural Uganda: A cross-sectional, population-based study. Public Health Nutrition, 21(5), 838-848. https://doi.org/10.1017/S1368980017002154

Porter, V., Alderson, L., Hall, S. J. G., & Sponenberg, D. P. (2016). Mason's world encyclopedia of livestock breeds and breeding (Vol. 2). CABI. Retrieved from https://books.google.com/books?id=2UEJDAAAQBAJ

Pourlis, A. F. (2011). A review of morphological characteristics relating to the production and reproduction of fat-tailed sheep breeds. Tropical Animal Health and Production, 43, 1267-1287. https://doi.org/10.1007/s11250-011-9853-x

Rabel, R. A. C., Bangert, E. A., Wilson, K., & Wheeler, M. B. (2024). The use of assisted reproductive technologies to improve genetic selection in cattle. In J. C. Gardón & K. Satué Ambrojo (Eds.), Assisted reproductive technologies in animals: Volume 1: Current trends for reproductive management (pp. 219-262). Switzerland: Springer Nature. https://doi.org/10.1007/978-3-031-73079-5_8

Rewe, T. O., Herold, P., Kahi, A. K., & Zárate, A. V. (2009). Breeding indigenous cattle genetic resources for beef production in Sub-Saharan Africa. Outlook on Agriculture, 38(4), 317-326. https://doi.org/10.5367/000000009790422205

Rodrigues, C. F. M. (2014). Historical context of cattle embryo transfer technique in Brazil. Animal Reproduction, 11(3), 137-140.

Rodriguez-Villamil, P., Ongaratto, F. L., Bostrom, J. R., Larson, S., & Sonstegard, T. (2021). 13 Generation of SLICK beef cattle by embryo microinjection: A case report. Reproduction, Fertility and Development, 33(2), 114. https://doi.org/10.1071/RDv33n2Ab13

Rweyemamu, M., Roeder, P., MacKay, D., Sumption, K., Brownlie, J., & Leforban, Y. (2008). Planning for the progressive control of foot-and-mouth disease worldwide. Transboundary and Emerging Diseases, 55(1), 73-87. https://doi.org/10.1111/j.1865-1682.2007.01016.x

Safdar, B., Zhou, H., Li, H., Cao, J., Zhang, T., Ying, Z., & Liu, X. (2022). Prospects for plant-based meat: Current standing, consumer perceptions, and shifting trends. Foods, 11(23), 3770. https://www.mdpi.com/2304-8158/11/23/3770

Sarao, F. B. (1922). Importation of cattle into the Philippine Islands. University of Wisconsin.

Shaw, D. J. (2007). World Food Summit, 1996. In D. J. Shaw (Ed.), World food security: A history since 1945 (pp. 347-360) UK: Palgrave Macmillan. https://doi.org/10.1057/9780230589780_35

Spencer, D. S. (1996). Infrastructure and technology constraints to agricultural development in the humid and subhumid tropics of Africa. African Development Review, 8(2), 68-93. https://doi.org/10.1111/j.1467-8268.1996.tb00090.x

Stear, M. J., Doligalska, M., & Donskow-Schmelter, K. (2007). Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology, 134(2), 139-151. https://doi.org/10.1017/S0031182006001557

Stear, M. J., Doligalska, M., & Donskow-Schmelter, K. (2007). Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology, 134(2), 139-151. https://doi.org/10.1017/S0031182006001557

Steinfeld, H., Gerber, P. J., Wassenaar, T., Castel, V., Rosales, M., & de Haan, C. (2006). Livestock's long shadow: Environmental issues and options (Vol. 24). FAO.

Stroud, B. K. (2013). Consequences of mishandling frozen semen and embryos.

Syrstad, O. (1990). Mpwapwa cattle: An Indo-Euro-African synthesis. Tropical Animal Health and Production, 22(1), 17-22. https://doi.org/10.1007/BF02243492

Te Pas, C. M., & Rees, R. M. (2014). Analysis of differences in productivity, profitability and soil fertility between organic and conventional cropping systems in the tropics and sub-tropics. Journal of Integrative Agriculture, 13(10), 2299-2310. https://doi.org/10.1016/S2095-3119(14)60786-3

Tessema, W. K., Ingenbleek, P. T. M., & van Trijp, H. C. M. (2014). Pastoralism, sustainability, and marketing: A review. Agronomy for Sustainable Development, 34, 75-92. https://doi.org/10.1007/s13593-013-0167-4

Thornton, P. K. (2010). Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853-2867. https://doi.org/10.1098/rstb.2010.0134

Thornton, P. K., Jones, P. G., Owiyo, T., Kruska, R. L., Herrero, M., Kristjanson, P., Notenbaert, A., Bekele, N., Omolo, A., Orindi, V., Otiende, B., Ochieng, A., Bhadwal, S., Anantram, K., Nair, S., Kumar, V., & Kulkar, U. (2006). Mapping climate vulnerability and poverty in Africa. Nairobi, Kenya: ILRI.

Thornton, P., Nelson, G., Mayberry, D., & Herrero, M. (2022). Impacts of heat stress on global cattle production during the 21st century: A modelling study. The Lancet Planetary Health, 6(3), e192-e201. https://doi.org/10.1016/S2542-5196(22)00002-X

Turner, M. D., & Schlecht, E. (2019). Livestock mobility in sub-Saharan Africa: A critical review. Pastoralism, 9, 13. https://doi.org/10.1186/s13570-019-0150-z

UF. (2020). University of Florida. Dairy Update [Quarterly newsletter].

UN. (2023). The Sustainable Development Goals report: Special edition. United Nations. Retrieved from https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf

URUS. (2021). URUS launches Africa Dairy Genetics Multiplication Program. URUS. Retrieved from https://www.urus.org/news/urus-launches-africa-dairy-genetics-multiplication-program

van der Horst, G. (2018). A new CASA system for East Africa, Tanzania, for the National Artificial Insemination Centre: A unique situation! Microptic. Retrieved from https://www.micropticsl.com/new-casa-in-east-africa/

Vermeiren, K., Van Rompaey, A., Loopmans, M., Serwajja, E., & Mukwaya, P. (2012). Urban growth of Kampala, Uganda: Pattern analysis and scenario development. Landscape and Urban Planning, 106(2), 199-206. https://doi.org/10.1016/j.landurbplan.2012.03.006

Viana, J. H. M. (2023). 2022 statistics of embryo production and transfer in domestic farm animals. International Embryo Technology Society, 41(4). Retrieved from https://www.iets.org/Portals/0/Documents/Public/Committees/DRC/IETS_Data_Retrieval_Report_2022.pdf

Wanyama, R., Gödecke, T., Chege, C. G. K., & Qaim, M. (2019). How important are supermarkets for the diets of the urban poor in Africa? Food Security, 11(6), 1339-1353. https://doi.org/10.1007/s12571-019-00974-3

Wellington, K. E., & Mahadevan, P. (1977). Development of the Jamaica Hope breed of dairy cattle. FAO Animal Production and Health Paper, 1, 67-72. Rome, Italy: FAO.

WFP. (2024a). WFP Kenya country brief October 2024 (WFP Country Brief). Retrieved from https://www.wfp.org/countries/kenya

WFP. (2024b). WFP Tanzania country brief. World Food Programme. Retrieved from https://docs.wfp.org/api/documents/WFP-0000161066/download/?_ga=2.53232814.728996879.1729793576-384865105.1729793575

Whitton, C., Bogueva, D., Marinova, D., & Phillips, C. J. C. (2021). Are we approaching peak meat consumption? Analysis of meat consumption from 2000 to 2019 in 35 countries and its relationship to gross domestic product. Animals, 11(12), 3466. https://doi.org/10.3390/ani11123466

Wiemers, M., Bachmeier, M., Hanano, A., Chéilleachair, R. N., Vaughan, A., Foley, C., Mann, H., Weller, D., Radtke, K., & Fritschel, H. (2024). 2024 Global Hunger Index: How gender justice can advance climate resilience and zero hunger (Global Hunger Index, Issue). Retrieved from www.globalhungerindex.org

Willett, E. L., Black, W. G., Casida, L. E., Stone, W. H., & Buckner, P. J. (1951). Successful transplantation of a fertilized bovine ovum. Science, 113(2931), 247. https://doi.org/10.1126/science.113.2931.247

Wilson, R. T. (2021). When is a breed not a breed: The myth of the Mpwapwa cattle of Tanzania. Tropical Animal Health and Production, 53, 233. https://doi.org/10.1007/s11250-021-02669-4

WorldBank. (2009). Minding the stock: Bringing public policy to bear on livestock sector development. The World Bank. Retrieved from https://hdl.handle.net/10986/3043

Zuidema, D., Kerns, K., & Sutovsky, P. (2021). An exploration of current and perspective semen analysis and sperm selection for livestock artificial insemination. Animals, 11(12), 3563. https://doi.org/10.3390/ani11123563

Published

15-09-2025

How to Cite

Bangert, E. A., & Wheeler, M. B. (2025). Assisted reproductive technologies and genetic improvement strategies for enhancing livestock production and food security in Tropical East Africa: A review. Journal of Scientific Agriculture, 9, 189–203. https://doi.org/10.25081/jsa.2025.v9.9599

Issue

Section

Articles