Antifungal activity of endophytic fungi extracts isolated from Vitellaria paradoxa against phytopathogenic fungi in cucumber crops

Authors

  • Abdullahi Mairiga Mohammed Department of Zoology, Nasarawa State University, Nigeria
  • Kabir Mustapha Umar Centre for Dryland Agriculture, Bayero University, Kano, Nigeria
  • Ibrahim Lawal Abdullahi Department of Biological Sciences, Bayero University, Kano, Nigeria
  • Razak Terhem Department of Forestry, Universiti Putra Malaysia, Malaysia

DOI:

https://doi.org/10.25081/jsa.2025.v9.9508

Keywords:

Antagonistic activity, Fusarium, Inhibition rates

Abstract

This study assessed the antifungal activity of crude extracts from endophytic fungi isolated from Vitellaria paradoxa against Fusarium oxysporum, F. solani, F. demerum, F. cladosporum, Aspergillus niger, and A. flavus associated with cucumber plants. Morphological and molecular methods identified three suspected endophytes (MIK1, MIK2, and MIK3) as A. niger, A. welwitschiae and Rhizopus arrhizus. The endophyte culture broths were incubated on an orbital shaker for 14 days at 28 °C and 120 rpm and then extracted with organic solvents. The ethyl acetate yielded (4.57 g), methanol (4.18 g), and n-hexane (3.68 g) crude extracts. The fungal endophytes (MIK1, MIK2, and MIK3) were screened for their antagonistic activity against six pathogenic fungi using a dual culture method. The results show that all the endophytes strongly inhibit the growth of fungi, with inhibition rates of 92% and 99%. The antifungal activity of the crude extracts was tested using the poisoned food technique at concentrations of 0.25, 0.50, 1.0, 1.5, and 2.0 μg/mL. The results indicate that the ethyl acetate extract of A. niger exhibits potent inhibition against the growth of the same fungus, with inhibition rates of 78.18% and 79.12% at 2.0 μg/mL. All the fungal crude extracts possess antifungal activity and can be used to manage the six fungal species tested. Further field experiments should be conducted for practical applications against other plant pathogens to reduce reliance on synthetic agrochemicals.

Downloads

Download data is not yet available.

References

Ahamed, A., & Ahring, B. K. (2011). Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresource Technology, 102(20), 9718-9722. https://doi.org/10.1016/J.BIORTECH.2011.07.073

Ahoyo, C. C., Houéhanou, T. D., Yaoitcha, A. S., Akpi, B. P., Natta, A., & Houinato, M. R. B. (2024). How do plant demographic and ecological traits combined with social dynamics and human traits affect woody plant selection for medicinal uses in Benin (West Africa)? Journal of Ethnobiology and Ethnomedicine, 20(1), 55. https://doi.org/10.1186/s13002-024-00655-2

Alwathnani, H. A., & Perveen, K. (2012). Biological control of fusarium wilt of tomato by antagonist fungi and cyanobacteria. African Journal of Biotechnology, 11(5), 1100-1105. https://doi.org/10.5897/AJB11.3361

Arora, J., & Ramawat, K. G. (2017). An introduction to endophytes. In D. K. Maheshwari (Ed.), Endophytes: Biology and Biotechnology (Vol. 1, pp. 1-23). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-66541-2_1

Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4S1), 1044-1051. https://doi.org/10.1590/S1415-47572012000600020

Cai, L., Zhang, H., Deng, Y., Tian, W., Fan, G., & Sun, X. (2023). Antifungal activity of Streptomyces hygroscopicus JY-22 against Alternaria alternata and its potential application as a biopesticide to control tobacco brown spot. Agronomy, 13(7), 1944. https://doi.org/10.3390/AGRONOMY13071944

Chagas, F. O., Dias, L. G., & Pupo, M. T. (2013). A mixed culture of endophytic fungi increases production of antifungal polyketides. Journal of Chemical Ecology, 39(10), 1335-1342. https://doi.org/10.1007/S10886-013-0351-7

Cullen, M. G., Thompson, L. J., Carolan, J. C., Stout, J. C., & Stanley, D. A. (2019). Fungicides, herbicides and bees: A systematic review of existing research and methods. Plos One, 14(12), e0225743. https://doi.org/10.1371/JOURNAL.PONE.0225743

Dar, R. A., Shahnawaz, M., Ahanger, M. A., & ul Majid, I. (2023). Exploring the diverse bioactive compounds from medicinal plants: A review. The Journal of Phytopharmacology, 12(3), 189-195. https://doi.org/10.31254/PHYTO.2023.12307

Debnath, S., Rawat, D., Mukherjee, A. K., Adhikary, S., & Kundu, R. (2019). Applications and constraints of plant beneficial microorganisms in agriculture. In S. M. Mirmajlessi & R. Radhakrishnan (Eds.), Biostimulants in Plant Science London, UK: IntechOpen Limited. https://doi.org/10.5772/INTECHOPEN.89190

Deshmukh, S. K., Dufossé, L., Chhipa, H., Saxena, S., Mahajan, G. B., & Gupta, M. K. (2022). Fungal endophytes: A Potential source of antibacterial compounds. Journal of Fungi, 8(2), 164. https://doi.org/10.3390/JOF8020164

Devi, K. S., Misra, D. K., Saha, J., Devi, Ph. S., & Sinha, B. (2018). Screening of suitable culture media for growth, cultural and morphological characters of pycnidia forming fungi. International Journal of Current Microbiology and Applied Sciences, 7(8), 4207-4214. https://doi.org/10.20546/ijcmas.2018.708.440

Dimobe, K., Tondoh, J. E., Weber, J. C., Bayala, J., Ouédraogo, K., & Greenough, K. (2018). Farmers’ preferred tree species and their potential carbon stocks in southern Burkina Faso: Implications for biocarbon initiatives. Plos One, 13(12), e0199488. https://doi.org/10.1371/JOURNAL.PONE.0199488

Fattah, A. G. M., Haddad, E. S. A., Hafez, E. E., & Rashad, Y. M. (2011). Induction of defense responses in common bean plants by Arbuscular mycorrhizal fungi. Microbiological Research, 166(4), 268-281. https://doi.org/10.1016/j.micres.2010.04.004

Fawole, O., & Yahaya, J. (2017). Biocontrol potentials of crude extracts of soil fungi on Amaranthus hybridus and Phyllanthus amarus. Journal of Agricultural Sciences, 62(1), 41-49. https://doi.org/10.2298/jas1701041f

Feng, D.-H., & Cui, J.-L. (2025). The effect of endophytic fungus CA3-A with biotransformation or catalysis activity on the metabolite formation of traditional Chinese medicinal Astragalus Membranaceus var. Mongholicus (Bunge) P. K. Hsiao. Plant Foods for Human Nutrition, 80(1), 69. https://doi.org/10.1007/S11130-025-01317-8

Ferrigo, D., Raiola, A., & Causin, R. (2016). Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules, 21(5), 627. https://doi.org/10.3390/MOLECULES21050627

Gell, S. (2024). Pharmacognostic Analysis of Medicinal Plants: A Review. Alternative and Integrative Medicine, 13(5), 536.

Gul, H. I., Tugrak, M., Sakagami, H., Taslimi, P., Gulcin, I., & Supuran, C. T. (2016). Synthesis and bioactivity studies on new 4-(3-(4-Substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c] pyrazol-2-yl) benzenesulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1619-1624. https://doi.org/10.3109/14756366.2016.1160077

Gulhane, A. R., Giri, G. K., & Khambalkar, S. V. (2018). Antifungal activity of aroma chemicals against graminicolous seed borne fungi by poisoned food method. International Journal of Current Microbiology and Applied Sciences, 7(7), 477. https://doi.org/10.20546/ijcmas.2018.707.477

Hawksworth, D. L., & Lücking, R. (2017). Fungal Diversity Revisited: 2.2 to 3.8 million Species. Microbiology Spectrum, 5(4), FUNK-0052-2016. https://doi.org/10.1128/microbiolspec.funk-0052-2016

Hyde, K. D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T., Abeywickrama, P. D., Aluthmuhandiram, J. V. S., Brahamanage, R. S., Brooks, S., Chaiyasen, A., Chethana, K. W. T., Chomnunti, P., Chepkirui, C., Chuankid, B., de Silva, N. I., Doilom, M., Faulds, C., Gentekaki, E., … Stadler, M. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97(1), 1-136. https://doi.org/10.1007/s13225-019-00430-9

Jiang, P., Fu, X., Niu, H., Chen, S., Liu, F., Luo, Y., Zhang, D., & Lei, H. (2023). Recent advances on Pestalotiopsis genus: Chemistry, biological activities, structure–activity relationship, and biosynthesis. Archives of Pharmacal Research, 46(6), 449-499. https://doi.org/10.1007/S12272-023-01453-2

Joseph, B., & Priya, M. R. (2011). Bioactive compounds from endophytes and their potential in pharmaceutical effect: A review. American Journal of Biochemistry and Molecular Biology, 1, 291-309. https://doi.org/10.3923/AJBMB.2011.291.309

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/MOLBEV/MSY096

Larran, S., Perelló, A., Simón, M. R., & Moreno, V. (2007). The endophytic fungi from wheat (Triticum aestivum L.). World Journal of Microbiology & Biotechnology, 23(4), 565-572. https://doi.org/10.1007/S11274-006-9266-6

Lata, R., Chowdhury, S., Gond, S. K., & White, J. F. (2018). Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology, 66(4), 268-276. https://doi.org/10.1111/LAM.12855

Liu, K., Ding, X., Deng, B., & Chen, W. (2009). Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. Journal of Industrial Microbiology and Biotechnology, 36(9), 1171. https://doi.org/10.1007/S10295-009-0598-8

Liu, X., Zhou, Z. Y., Cui, J. L., Wang, M. L., & Wang, J. H. (2021). Biotransformation ability of endophytic fungi: From species evolution to industrial applications. Applied Microbiology and Biotechnology, 105(19), 7095-7113. https://doi.org/10.1007/S00253-021-11554-X

Lokonon, B. E., Mangamana, E. T., Kakaï, R. G., & Sinsin, B. (2017). Assessing use, diversity and local conservation priorities of woody species within agroforestry systems along Ouémé catchment in Benin (West Africa). Ethnobiology and Conservation, 6(4), 1-19. https://doi.org/10.15451/ec2017-05-6.4-1-19

Lombard, L., Crous, P. W., Wingfield, B. D., & Wingfield, M. J. (2010). Phylogeny and systematics of the genus Calonectria. Studies in Mycology, 66, 31-69. https://doi.org/10.3114/SIM.2010.66.03

Lugtenberg, B. J. J., Caradus, J. R., & Johnson, L. J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92(12), fiw194. https://doi.org/10.1093/FEMSEC/FIW194

Mends, M. T., Yu, E., Strobel, G. A., Riyaz-Ul-Hassan, S., Booth, E., Geary, B., Sears, S., Taatjes, C. A., & Hadi, M. Z. (2012). An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. Journal of Petroleum & Environmental Biotechnology, 3, 3. https://doi.org/10.4172/2157-7463.1000117

Mousa, W. K., & Raizada, M. N. (2013). The diversity of anti-microbial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective. Frontiers in Microbiology, 4, 65. https://doi.org/10.3389/FMICB.2013.00065

Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–plant–pathogen Interactions: Advances in Genetics of Biological Control. Indian Journal of Microbiology, 52(4), 522-529. https://doi.org/10.1007/S12088-012-0308-5

Naik, B. S., & Krishnamurthy Y. L. (2010). Endophytes: The real untapped high energy biofuel resource. Current Science, 98(7), 883.

Nair, D. N., & Padmavathy, S. (2014). Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal, 2014(1), 250693. https://doi.org/10.1155/2014/250693

Ojo, O., Kengne, M. H. K., Fotsing, M. C., Mmutlane, E. M., & Ndinteh, D. T. (2021). Traditional uses, phytochemistry, pharmacology and other potential applications of Vitellaria paradoxa Gaertn. (Sapotaceae): A review. Arabian Journal of Chemistry, 14(1), 103213. https://doi.org/10.1016/j.arabjc.2021.103213

Packiaraj, R., Jeyakumar, S., Ayyappan, N., Adhirajan, N., Premkumar, G., Rajarathinam, K., & Muthuramkumar, S. (2016). Antimicrobial and cytotoxic activities of endophytic fungus Colletotrichum gloeosporioides isolated from endemic tree Cinnamomum malabatrum. Studies in Fungi, 1(1), 104-113. https://doi.org/10.5943/sif/1/1/10

Pandi, M., Rajapriya, P., & Manoharan, P. T. (2013). Extraction and Characterization of Taxol: An anticancer drug from an endophytic and pathogenic fungi. In V. K. Gupta, & M. G. Tuohy (Eds.), Laboratory Protocols in Fungal Biology (pp. 523-527) New York, US: Springer. https://doi.org/10.1007/978-1-4614-2356-0_51

Park, Y. H., Chandra Mishra, R., Yoon, S., Kim, H., Park, C., Seo, S. T., & Bae, H. (2019). Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. Journal of Ginseng Research, 43(3), 408-420. https://doi.org/10.1016/J.JGR.2018.03.002

Radha, Kumari, N., Prakash, S., Sharma, N., Puri, S., Thakur, M., Singh, J., & Kumar, M. (2024). Medicinal and aromatic plants as potential sources of bioactives along with health-promoting activities. Current Food Science and Technology Reports, 2(4), 359-376. https://doi.org/10.1007/S43555-024-00042-8

Rana, K. L., Kour, D., Sheikh, I., Yadav, N., Yadav, A. N., Kumar, V., Singh, B. P., Dhaliwal, H. S., & Saxena, A. K. (2019). Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In B. P. Singh (Ed.), Advances in Endophytic Fungal Research (pp. 105-144) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-03589-1_6

Rosas-Burgos, E. C., Cortez-Rocha, M. O., Cinco-Moroyoqui, F. J., Robles-Zepeda, R. E., López-Cervantes, J., Sánchez-Machado, D. I., & Lares-Villa, F. (2009). Antifungal activity in vitro of Baccharis glutinosa and Ambrosia confertiflora extracts on Aspergillus flavus, Aspergillus parasiticus and Fusarium verticillioides. World Journal of Microbiology and Biotechnology, 25(12), 2257-2261. https://doi.org/10.1007/S11274-009-0116-1/METRICS

Sahoo, S., Sarangi, S., & Kerry, R. G. (2017). Bioprospecting of Endophytes for Agricultural and Environmental Sustainability. In J. K. Patra, C. N. Vishnuprasad & G. Das (Eds.), Microbial Biotechnology (Vol. 1, pp. 429-458) Singapore: Springer. https://doi.org/10.1007/978-981-10-6847-8_19

Shah, S. K., Dey, Y. N., Madhavan, Y., & Maity, A. (2023). Fungal Endophytes: A storehouse of bioactive compounds. Mini Reviews in Medicinal Chemistry, 23(9), 978-991. https://doi.org/10.2174/1389557522999220422133020

Singh, N. K., Pandey, R. R., & Singh, M. S. (2024). Biological activities and GC-MS analysis of crude extract of an endophytic fungus Fusarium sp. F1C1. Vegetos, 37, 1720-1732. https://doi.org/10.1007/s42535-024-00817-3

Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200-216. https://doi.org/10.1016/J.RSER.2009.07.017

Strobel, G., Singh, S. K., Riyaz-Ul-Hassan, S., Mitchell, A. M., Geary, B., & Sears, J. (2011). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiology Letters, 320(2), 87-94. https://doi.org/10.1111/J.1574-6968.2011.02297.X

Sun, Y., Wang, M., Li, Y., Gu, Z., Ling, N., Shen, Q., & Guo, S. (2017). Wilted cucumber plants infected by Fusarium oxysporum f. sp. cucumerinum do not suffer from water shortage. Annals of Botany, 120(3), 427-436. https://doi.org/10.1093/AOB/MCX065

Susca, A., Villani, A., Moretti, A., Stea, G., & Logrieco, A. (2020). Identification of toxigenic fungal species associated with maize ear rot: Calmodulin as single informative gene. International Journal of Food Microbiology, 319, 108491. https://doi.org/10.1016/J.IJFOODMICRO.2019.108491

Takim, F. O., Awolade, V., Ajisope, T. A., & Lawal, M. B. (2023). Evaluation of two new herbicide mixtures for weed control in maize (Zea Mays L.). Journal of Environmental Issues and Agriculture in Developing Countries, 4(1), 71-78.

Talapatra, K., Das, A. R., Saha, A. K., & Das, P. (2017). In vitro antagonistic activity of a root endophytic fungus towards plant pathogenic fungi. Journal of Applied Biology & Biotechnology, 5(2), 68-71. https://doi.org/10.7324/JABB.2017.50210

Tamou, B. C. K., Mechling, J. M., Yabi, C. P., Godonou, G. E. F., Adjovi, E. C., Gibigaye, M., Lecomte, A., & Brosse, N. (2023). Use of additive based on non-timber forest products for the ecological stabilization of raw earth: Case of the Parkia Biglobosa nut and Vitellaria Paradoxa. Journal of Renewable Materials, 11(12), 4143-4160. https://doi.org/10.32604/jrm.2023.030509

Tekpinar, A. D., & Kalmer, A. (2019). Utility of various molecular markers in fungal identification and phylogeny. Nova Hedwigia, 109(1), 187-224. https://doi.org/10.1127/nova_hedwigia/2019/0528

Tomsheck, A. R., Strobel, G. A., Booth, E., Geary, B., Spakowicz, D., Knighton, B., Floerchinger, C., Sears, J., Liarzi, O., & Ezra, D. (2010). Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microbial Ecology, 60(4), 903-914. https://doi.org/10.1007/S00248-010-9759-6

Varga, J., Frisvad, J. C., Kocsubé, S., Brankovics, B., Tóth, B., Szigeti, G., & Samson, R. A. (2011). New and revisited species in Aspergillus section Nigri. Studies in Mycology, 69(1), 1-17. https://doi.org/10.3114/SIM.2011.69.01

Wang, M., Sun, Y., Gu, Z., Wang, R., Sun, G., Zhu, C., Guo, S., & Shen, Q. (2016). Nitrate protects cucumber plants Against Fusarium oxysporum by regulating citrate exudation. Plant and Cell Physiology, 57(9), 2001-2012. https://doi.org/10.1093/PCP/PCW124

Yashavanth R. H. C., Santosh, P., Rakshith, D., & Satish, S. (2015). Molecular characterization of an endophytic Phomopsis liquidambaris CBR-15 from Cryptolepis buchanani Roem. and impact of culture media on biosynthesis of antimicrobial metabolites. 3 Biotech, 5(2), 165-173. https://doi.org/10.1007/s13205-014-0204-2

Yuan, Z., Su, Z., Mao, L., Peng, Y., Yang, G., Lin, F., & Zhang, C. (2011). Distinctive endophytic fungal assemblage in stems of wild rice (Oryza granulata) in China with special reference to two species of Muscodor (Xylariaceae). Journal of Microbiology, 49(1), 15-23. https://doi.org/10.1007/S12275-011-0213-3

Zanna, H., Tijani, Y., Abubakar, S., Modu, B., Damasak, A. A., & Uzairu, S. M. (2021). Fungicidal potential of selected plant extracts against human pathogenic fungi. Scientific African, 13(1), e00864. https://doi.org/10.1016/J.SCIAF.2021.E00864

Zhao, S., Li, J., Liu, J., Xiao, S., Yang, S., Mei, J., Ren, M., Wu, S., Zhang, H., & Yang, X. (2023). Secondary metabolites of Alternaria: A comprehensive review of chemical diversity and pharmacological properties. Frontiers in Microbiology, 13, 1085666. https://doi.org/10.3389/FMICB.2022.1085666

Published

25-07-2025

How to Cite

Mohammed, A. M., Umar, K. M., Abdullahi, I. L., & Terhem, R. (2025). Antifungal activity of endophytic fungi extracts isolated from Vitellaria paradoxa against phytopathogenic fungi in cucumber crops. Journal of Scientific Agriculture, 9, 110–121. https://doi.org/10.25081/jsa.2025.v9.9508

Issue

Section

Articles