Genetic analysis of the effect of sodium azide (chemical mutagen) induction on three Cameroonian Okra (Abelmoschus esculentus (L.) Moench) varieties’ growth characteristics, yield, and enzymatic activities
DOI:
https://doi.org/10.25081/jsa.2025.v9.9499Keywords:
Abelmoschus esculentus, Azoture azide, Agronomic parameters, Enzymes, Hybridization, Genetic advance, HeritabilityAbstract
Abelmoschus esculentus is a plant with nutritional and medical properties, therefore environmental circumstances are progressively affecting production. The aim of this study was to contribute to the development of genetic variability in three okra varieties exposed to sodium azide (SA). In this study, sodium azide (0 g/L, 2 g/L, 4 g/L, and 6 g/L for 6 hours) was administrated to three okra seeds (Locale 1, Yellen, and Hire) in the field. Descriptors like seed germination rate, plant height (PH), stem diameter (SD), number of leaves per plant (NLP), foliar area (FA), number of fruits per plant (NFP), and number of seeds per fruit (NSF) were used to analyze genetic variability, broad-sense heritability (H²), and genetic advance (GA) in three okra varieties. The results showed that the Yellen variety had the highest percentage of seed germination (100% in M1 and M2 for control (T0), to 41.67% (M1) and 44.44% (M2) for T3) as well as POX (71.01% for M1 and 128.84% for M2) and CAT (198.03% for M1 and 125.80% for M2) activities. It also had the highest NFP in the T0, with values between 1.25±2.29 in M1, and 14.42±2.11 in M2 (p˂0.05). In terms of productivity, the Hire variety outperformed with elevated FW1F (16.21 g for M1, and 25.87 g for M2) and DW1F (15.44 g for M1, and 23.10 g for M2) values. However, the explained variance of the induction of sodium azide was R²=0.101 for growth parameters, R²=0.377 for productivity parameters, and R²=-0.218 for enzymatic activities. Following M2 generations, characters FA and NFP displayed high genotypic coefficient of variation (GCV), phenotypic coefficient of variation (PCV), broad-sense heritability, and genetic advance as percent of mean (GAM) levels. Therefore, chemical mutagenesis offers a straightforward method for introducing mutations within plants through hybridization, which can increase favorable crop improvement programs.
Downloads
References
Adeosun, C. A., Elem, K. A., & Eze, C. D. (2020). Mutagenic effects of sodium azide on the survival and morphological characters of tomato varieties. Nigerion Journal of Biotechnology, 37(1), 55-62. https://doi.org/10.4314/njb.v37i1.6
Allard, R. W. (1960). Principles of Plant Breeding. New York, US: John Wiley and Sons.
Aminu, Y., Bala, B. U., Kabiru, H. I., & Musbahu, A. A. (2017). Induced growth and yield responses to seasonal variation by sodium azide in tomato (Lycopersicon esculentum Mill.). Bayero Journal of Pure and Applied Sciences, 10(1), 226-230. https://doi.org/10.4314/bajopas.v10i1.45S
Angel, D. P., Ahamed, M. L., Satish, Y., Patro, T. S. S. K., Prakash, K. K., & Srivastava, R. K. (2024). Genetic variability analysis for yield and important agronomic traits in association panel of pearl millet. [Pennisetum glaucum (L.) R. Br.]. International Journal of Advanced Biochemistry Research, 8(9), 843-848. https://doi.org/10.33545/26174693.2024.v8.i9Sj.2230
Anonymous. (2015). Plan communale de développement de Bipindi. Yaoundé, Cameroon: OAL, ATIPAD & PNDP.
Anwar, F., Rashid, U., Ashraf, M., & Nadeem, M. (2010). Okra (Hibiscus esculentus) seed oil for biodiesel production. Applied Energy, 87(3), 779-785. https://doi.org/10.1016/j.apenergy.2009.09.020
Arulbalachandran, D., Mullainathan, L., & Velu, S. (2009). Screening of mutants in black gram (Vigna mungo (L.) Hepper) with effect of DES and COH in M generation. Journal of Phytology, 21, 213-218.
Aviya, K., & Mullainathan, L. (2018). Studies on effect of induced mutagenesis on Finger millet (Eleusine coracana (L.) gaertn.) VAR-CO 13 in M1 generation. Horticultural Biotechnology Research, 4, 23-25. https://doi.org.10.25081/hbr.2018.v4.3485
Bhat, T. A., Khan, A. H., & Parveen, S. (2005). Comparative analysis of meiotic abnormalities induced by gamma rays, EMS and MMS in Vicia faba L. The Journal of Indian Botanical Society, 84, 45-48.
Cakmak, I., & Horst, W. J. (1991). Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, peroxidase activities in root tips of soybean (Glycine max L.). Physiologia Plantarum, 83(3), 463-468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x
Capot, S., & Perus, D. (2013). Les Enjeux De La Propriété Industrielle Appliques Aux Semences Végétales. Cahiers Du Lab. RII : Documents De Travail, Laboratoire de Recherche sur l’Industrie et l’Innovation. Université de la Côte d’Opale.
Dabholkar, A. R. (1992). Elements of Bio Metrical Genetics (pp. 57-116) New Delhi, India: Concept Publication company.
Das, S., Nandi, G., & Ghosh, L. K. (2019). Okra and its various applications in drug delivery, food Technology, health care and pharmacological aspects-a review. International Journal of Pharmaceutical Science, 11(6), 2139-2147.
Dewi, K., Agustina R. Z., & Nurmalika, F. (2016). Effects of blue light and paclobutrazol on seed germination, vegetative growth and yield of black rice (Oryza sativa L. “Cempo Ireng”). Journal of Biotropian, 23(2), 85-96. https://doi.org/10.11598/btb.2016.23.2.478
Dewi, K., Meidiana, G., Sudjino, S., & Suharyanto, S. (2016). Effects of Sodium Azide (NaN3) and cytokininon vegetative growth and yield of black rice plant (Oryza sativa L. Cempo Ireng’). AIP Conference Proceedings, 1755(1), 130005. https://doi.org/10.1063/1.4958549
Diallo, A., Goudiaby, A. O. K., Diedhiou, M. A. A., Sambou, A., Niang Y. D., & Fall, B. F. (2022). Characteristics and weed dynamics of okra (Abelmoschus esculentus L) and tomato (Solanum lycopersicum L) under the effect of different org anic fertilizers. International Journal of Biological and Chemical Sciences, 16(6), 2804-2820. https://doi.org/10.4314/ijbcs.v16i6.26
Diao, M., Dembele, R. H., Konate, K., & Dicko, M. H. (2019). Étude comparative des peroxydases de dix (10) plantes supérieures couramment rencontrées au Burkina Faso. International Journal of Biological and Chemical Sciences, 13(6), 2533-2545. https://doi.org/10.4314/ijbcs.v13i6.9
El Kaaby, E. A. J., Al-Ajeel, S. A., Al-Anny, J. A., Al-Aubaidy, A. A., Abdulrazaq, A., & Ammar, K. (2015). Effect of the chemical mutagens sodium azide on plant regeneration of two tomato cultivars under salinity stress condition in vitro. Journal of Life Sciences, 9, 27-31.
Elfeky, S., Abo-Hamad, S., & Saad-Allah, K. M. (2014). Physiological impact of sodium azide on Helianthus annus seedlings. International Journal of Agronomy and Agricultural Research, 4(5), 102-109.
Elian, D. H., Fotso, Djeuani, A. C., Djamndo, D. M., & Omokolo, N. D. (2021). Evaluation des activités polyphénoloxydases, peroxydases et l’accumulation des composés phénoliques dans la résistance du manioc stimulé au Benzo (1, 2, 3) thiadiazol-7-carbothionic acid-s-méthyl ester vis-à-vis de Colletotrichum gloeosporioides Penz. International Journal of Biological and Chemical Sciences, 15(3), 950-965. https://doi.org/10.4314/ijbcs.v15i3.9
Elian, H. D. B. (2017). Micropropagation du manioc (Manihot esculenta Crantz) et évaluation des marqueurs biochimiques de résistance à Colletotrichum gloeosporioides Penz Doctoral dissertation. Université de Yaoundé 1.
Esson, A. E., Adebola, M. I., & Yisa A. G. (2018). Frequency of mutation, lethality and efficiency of ethyl methane sulphonate and sodium azide on foxtail millet (Setaria itálica [L.] P. Beauv.). Journal of Scientific Agriculture, 2, 9-13. https://doi.org/10.25081/jsa.2018.v2.845
Eze, J. J., & Dambo, A. (2015). Mutagenic effects of sodium azide on the quality of maize seeds. Journal of Advanced Laboratory Research in Biology, 6(3), 76-82.
Gnago, J. A., Danho, M., Agneroh, T. A., Fofana, I. K., & Kohou, A. G. (2010). Efficacité des extraits de neem (Azadirachta indica) et de papayer (Carica papaya) dans la lutte contre les ravageurs du gombo (Abelmoschus esculentus) et du chou (Brassica oleracea) en Côte d’Ivoire. International Journal of Biological and Chemical Sciences, 4(4), 953-966. https://doi.org/10.4314/ijbcs.v4i4.63035
Gnanamurthy, S., Dhanavel, D., & Bharathi, T. (2013). Effect of chemical mutagenesis on biochemical activity and variability, heritability and genetic advances in Zea mays (L.). International Journal of Current Science, 3(4), 57-61.
Grover, I. S., & Virk, G. S. (1984). Induced chlorophyll mutants in mungbean (Vigna radiate). Acta Botanica Indica, 12(2), 138-147.
Hamouda, M., Saad-Allah, K., & Kasim, W. A. (2014). Molecular and physiological responses of Pisum sativum and Vicia faba to sodium azide. International Journal of Agronomy and Agricultural Research, 4(6), 46-61.
Herwibawa, B., & Kusmiyati, F. (2017). Mutagenic effects of sodium azide on the germination in rice (Oryza sativa L. cv. Inpago Unsoed 1). Journal Agroteknologi, 7(2), 9-14. https://doi.org/10.24014/ja.v7i2.2759
Hoyt P., & Bradfield, R. (1962). Effect of varying leaf area by partial defoliation and plant density on dry matter production in corn. Agronomy Journal, 54(6), 523-525.
Imran, M., & Kramer, H. (1951). Segregation for yield, height and maturity following a soya bean cross. Agronomy Journal, 43(12), 605-609. https://doi.org/10.2134/agronj1951.00021962004300120005x
Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955) Estimates of Genetic and Environmental Variability in Soybeans. Agronomy Journal, 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x
Jude, M. N., Pierre, E. O., Louise, O. M., Christian, D. K. J., & François, D. P. (2016). Heritability of the tolerance to Phytophthora megakarya Bras. and Grif. of Theobroma cacao L. in terms of their necrosis length, phenolic contents and activity of enzymes. International Journal of Biosciences, 8(5), 249-261.
Kammenn, V., & Broumer, D. (1964). Increase of polyphenoloxidase activity by a local virus infection in uninoculated of leaves. Virology, 22(1), 9-14. https://doi.org/10.1016/0042-6822(64)90042-X
Khan, S., Al-Qurainy, F., & Anwar, F. (2009). Sodium azide: a chemical mutagen for enhancement of agronomic traits of crop plants. Environment We International Journal of Science and Technology, 4, 1-21.
Lanaud, C. (1986). Utilisation des marqueurs enzymatiques pour l’étude génétique du cacaoyer. Café Cacao Thé, 30, 259-270.
Liamngee, S. M., Ogah, J. J., Amagu, K. T., Kwon-Ndung, E. H., Iorkor, D., & Tervershima, J. E. (2017). Mutagenic action of sodium azide on germination and emergence in landraces of Phaseolus vulgaris L. on the Jos Plateau Agro-Ecological Zone. IOSR Journal of Agriculture and Veterinary Science, 10(2), 64-70. https://doi.org/10.9790/2380-1002016470
Lunn, G., & Sansone, E. B. (2012). Destruction of hazardous chemicals in the laboratory. New York, US: Wiley.
Marius, C., Gerard, V., & Antoine, G. (1997). Le gombo, Abelmoschus esculentus (L.) Moench, une source possible de phospholipides. Agronomie et Biotechnologies, Oléagineux, corps gras, lipides, 5, 389-392.
Maryam, A. H. (2017). Effect of Gamma Ray and Sodium Azide on the Germination, Survival and Morphology of Varieties of Okro (Abelmuscus esculantus L. moench). International Journal of Horticulture & Agriculture, 2(1), 1-4. https://doi.org/10.15226/2572-3154/2/1/00107
Maryam, A. H., & Kasimu, A. A. (2016). Effect of combined doses of gamma ray and sodium azide (mutagenic agents) on the morphological traits of some varieties of okra (Abelmoschus esculentus). African journal of Agricultural Research, 11(32), 2968-2973. https://doi.org/10.5897/AJAR2016.11085
Mensah, J. K., & Obadoni, B. (2007). Effects of sodium azide on yield parameters of groundnut (Arachis hypogaea L.). African Journal of Biotechnology, 6(6), 668-671.
Misra, S., Dubey, S., & Bist, R. (2017). Sodium azide induced mutagenesis in wheat plant. World Journal of Pharmacy and Pharmaceutical Sciences, 6(10), 294-304.
Mitchum, M. G., Yamaguchi, S., Hanada, A., Kuwahara, A., Yoshioka, Y., Kato, T., Tabata, K., Kamiya, Y., & Sun, T. P. (2006). Distinct and over lapping roles of two gibberellin 3-oxidases in Arabidopsis development. The Plant Journal, 45(5), 804-818. https://doi.org/10.1111/j.1365-313X.2005.02642.x
Mohammadi, M., Ramezanpour, S., Navabpour, S., Soltanloo, H., Kalateharabi, M., & Kia, S. (2012). Genetic analysis and heritabilities of resistance to Mycosphaerella graminicola in wheat. Crop Breeding Journal, 2(1), 35-42. https://doi.org/10.22092/cbj.2012.100414
Mosisa, G., Muthuswamy, M., & Petros, Y. (2013). Sodium Azide: a chemical mutagen for enhancement of agronomic traits in Phaseolus vulgaris (Linn). Journal of Theoretical and Experimental Biology, 10(1-2), 21-25.
Muluken, D., Wassu, M., & Endale, G. (2016). Variability heritability and genetic advance in Ethiopian Okra [Abelmoschus esculentus (L.) Monech] collections for tender fruit yield and other agro-morphological traits. Journal of Apllied Life Sciences International, 4(1), 1-12. https://doi.org/10.9734/jalsi/2016/19483
Naaz, N., Choudhary, S., Sharma, N., Hasan, N., Al Shaye, N. A., & El-Moneim, A. D. (2023). Frequency and spectrum of M2 mutants and genetic variability in cyto-agronomic characteristics of fenugreek induced by caffeine and sodium azide. Fontiers in Plant Science, 13, 1-21. https://doi.org/10.3389/fpls.2022.1030772
NGuessan, K., Martine, B. M., Jacob, K. N., & Justin, Y. K. (2021). Réponse à la fertilisation organique et minérale de deux variétés de gombo (Abelmoschus esculentus (L.) Moench, Malvacea) À Daloa, Côte D'ivoire. International Journal of Advanced Research, 9(6), 51-60. https://doi.org/10.21474/IJAR01/12987
Nizamani, M. M., Rafiq, M., Noor-ul-Ain, N., Naqvi, S. H. A., Kaleri, A. H., & Gul, J. (2020). Effect of chemical mutagens on growth of Okra (Abelmoschus esculentus L. Moench). Pure and Applied Biology, 9(1), 1110-1117. https://doi.org/10.19045/bspab.2020.90116
Njock, R. S., Likeng-Li-Ngue, C. B., Ndjaga, J. M., Ngalle, H. B., & Bell, J. M. (2024). Caractérisation phytochimique et application de l’azoture de sodium (mutagène chimique) sur les graines de trois variétés de gombo (Abelmoschus esculentus) cultivées au Cameroun. Afrique Science, 24(6), 108-119.
Ogino, K., Kodama, N., Nakajima, M., Yamada, A., Nakamura, H., Nagase, H., Sadamitsu, D., & Maekawa, T. (2001). Catalase catalyzes nitrotyrosine formation from sodium azide and hydrogen peroxide. Free Radical Research, 35(6), 735-747. https://doi.org/10.1080/10715760100301241
Okey, E. N., Duncan, E. J., Sirju-charran, G., & Sreenivasan, T. N. (1997). Phytophthora canker resistance in cacao: Role of peroxidase, polyphenoloxidase and phenylalanine ammonia-lyase. Journal of Phytopathology, 145(7), 295-299. https://doi.org/10.1111/j.1439-0434.1997.tb00404.x
Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Miah, G., & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment, 30(1), 1-16. https://doi.org/10.1080/13102818.2015.1087333
Omeke, J. O. (2021). Effect of sodium azide induction on morphological traits of shombo and tatase (Capsicum annuum L.). Nigerian Agricultural Journal, 52(1), 111-117.
Panigrahi, K. K., Mohanty A. & Baisakh, B. (2014). Genetic divergence variability and charácter association in landraces of black gram (Vigna mungo (L.) Hepper) from Odisha. Journal of Crop and Weed, 10(2), 155-165.
Patil, B. S., Ahamed, L. M., Babu D. R., & Rani Y. A. (2015). Studies on genetic variability, heritability and genetic advance estimates in maize (Zea mays L.). The Andhra Agricultural Journal, 62(4), 821-824.
Pour, A. H., Tosun, M., & Haliloglu, K. (2023). Effect of Sodium Azide Treatment at Different Duration and Concentration on germination and Seedling Growth Characters in Wheat (Triticum aestivum L.). Journal of Science and Technology, 16(2), 406-422. https://doi.org/10.18185/erzifbed.1058149
Ramya, A. R., Ahamed, L., Rakesh, K., & Srivastava. (2017). Genetic diversity analysis among inbred lines of Pearl millet [Pennisetum glaucum (L.) R. Br.] based don grain yield and yield component characters. International Journal of Current Microbiology and Applied Science, 6(6), 2240-2250.
Rodriguez, R., & Tames, R. S. (1982). Peroxidase and IAA oxidase in germinating seeds of Cicer arientum L. Revista Espanola de Fisiologia, 38, 183-188.
Roychowdhury, R., & Tah, J. (2013). Mutagenesis - a potential approach for crop improvement. In K. Hakeem, P. Ahmad, & M. Ozturk (Eds.), Crop Improvement (pp. 149-187) Boston, MA: Springer. https://doi.org/10.1007/978-1-4614-7028-1_4
Saad-Allah, K. M., Hammouda, M., Kasim, W.A. (2014). Effect of sodium azide on growth criteria, some metabolites, mitotic index and chromosomal abnormalities in Pisum sativum and Vicia faba. International Journal of Agronomy and Agricultural Research, 4(4), 129-147.
Sable, A. D., Sable, A. D., Shegokar, S. P., Gore, N. S., & Harke, S. (2018). Effect of Sodium Azide Induction on Germination Percentage and Morphological Growth in Two Varieties of Okra. International Journal of Current Microbiology and Applied Sciences, 7(6), 3586-3593. https://doi.org/10.20546/ijcmas.2018.706.422
Seck, F., Covarrubias-Pazaran, G., Gueye, T., & Bartholomé J. (2023). Realized Genetic Gain in rice: achievements from breeding programs. Rice, 16, 61. https://doi.org/10.1186/s12284-023-00677-6
Sheikh, S. A., Wani, M. R., Lone, M. A., Tak, M. A., & Malla, N. A. (2012). Sodium Azide Induced Biological Damage and Variability for Quantitative Traits and Protein Content in Wheat [Triticum aestivum L.]. Journal of Plant Genomics, 2(1), 34-38.
Singh, B., Upadhyay, P. K., & Sharma K. C. (2014). Genetic variability, correlation and path analysis in Pearl millet [Pennisetum glaucum (L.) R. Br.]. Indian Research Journal of Genetics & Biotechnology, 6(3), 491-500.
Srivastava, P., Marker, S., Pandey, P., & Tiwari, D. K., (2011). Mutagenic effects of sodium azide on the growth and yield characteristics in wheat (Triticum aestivum L. em. Thell.). Asian Journal of Plant Sciences, 10(3), 190-201. https://doi.org/10.3923/ajps.2011.190.201
Srivastava, R., Agarwal, J., Pareek, M., & Verma, A. (2019). Mutagenic Effect of Sodium Azide (NaN3) on Seed Germination and Chlorophyll Content of Spinach oleracea. Indian Journal of Pure Applied Biosciences, 7(4), 366-370. https://doi.org/10.18782/2320-7051.7733
Sundari, S., Vasline, A. Y. & Saravanan, K. (2022). Selection of traits for seed yield improvement through variability parameters in sesame (Sesamum indicaum L.) genotypes. Journal of Applied and Natural Science, 14(3), 829-834. https://doi.org/10.31018/jans.v14i3.3507
Türkoğlu, T., Haliloğlu, K., Tosun, M., Szulc, S., Demirel, F., Eren, B., Bujak, H., Karagöz, H., Selwet, M., Özkan, G., & Niedbała, G. (2023). Sodium Azide as a Chemical Mutagen in Wheat (Triticum aestivum L.): Patterns of the Genetic and Epigenetic Effects with iPBS and CRED-iPBS Techniques. Agriculture, 13(6), 1242. https://doi.org/10.3390/agriculture13061242
Viani, V. E., Pegoraro, C., Busanello, C., & de Oliveira, A. C. (2019) Mutagenesis in rice: the basis for breeding a new super plant. Frontiers in Plant Science, 10, 1326. https://doi.org/10.3389/fpls.2019.01326
Vijay, K. G., Vanaja, M., Jyothi, L. N., & Maheswari, M. (2015). Studies on variability, heritability and genetic advance for quantitative traits in black gram (Vigna mungo L.). Agricultural Research Journal, 52(4), 28. https://doi.org/10.5958/2395-146X.2015.00056.3
Yafizham, & Herwibawa, B. (2018). The effects of sodium azide on seed germination and seedling growth of chili pepper (Capsicum annum L. cv. Landung). IOP Conference Series: Earth and Environmental Science, 102, 1-6. https://doi.org/10.1088/1755-1315/102/1/012052
Yahaya, Y. (2015). Correlation and heritability in Pearl millet [Pennisetum glaucum (L.) R. Br.]. African Journal of Agronomy, 3(3), 257-258.
Zeinullina, A., Rysbekova, A., Dyussibayeva, E., Zhirnova, I., Zhan-byrshina, N., Zhunusbayeva, Z., & Yancheva, S. (2023). Application of sodium azide for chemical induced mutagenesis of proso millet culture (Panicum miliaceum L.). Bulgarian Journal of Agricultural Science, 29(4), 623-631.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Raphaël Siméon Njock, Benoit Constant Likeng-Li-Ngue, Luther Fort Mbo Nkoulou, Jude Manga Ndjaga, Hermine Bille Ngalle, Joseph Martin Bell

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.