A review on Artificial Intelligence, Machine Learning and IoT integration in Precision Agriculture
DOI:
https://doi.org/10.25081/jsa.2025.v9.9497Keywords:
Agriculture, AI, Efficiency, Innovation, IoT, SustainabilityAbstract
Artificial Intelligence is revolutionizing agriculture by enhancing efficiency and promoting sustainability through advanced technologies. Machine learning and deep learning, including supervised, unsupervised, and reinforcement learning, enable precise crop and soil monitoring, as well as early detection of diseases and pests, leading to improved yield predictions and more effective resource management. Statistical evidence highlights a 30% increase in crop yields through AI-driven data analytics and precision farming techniques. Robotics and automation, such as automated harvesting systems, streamline operations, reducing labour costs by up to 25%. The integration of IoT and sensor networks facilitates smart irrigation systems, optimizing water use by 20-40%. Moreover, AI aids in climate change mitigation, reducing carbon footprints by employing adaptive strategies. Economic analyses reveal a significant return on investment for AI adoption, with emerging markets in agri-tech forecasted to grow by 18% annually. Despite challenges like high initial costs and data privacy concerns, the potential of AI to transform agriculture is immense, promising more sustainable and productive farming practices.
Downloads
References
Ahuja, S., & Mehra, P. (2023). Sustainable Artificial Intelligence Solutions for Agricultural Efficiency and Carbon Footprint Reduction in India. In O. Catalpas (Ed.), Agricultural Economics and Agri-Food Business London, UK: Intech Open Limited. https://doi.org/10.5772/intechopen.112996
Alam, M. A., Ahad, A., Zafar, S., & Tripathi, G. (2020). A neoteric smart and sustainable farming environment incorporating blockchain‐based artificial intelligence approach. In G. Shrivastava, D.-N. Le & K. Sharma (Eds.), Cryptocurrencies and Blockchain Technology Applications (pp. 197-213) Massachusetts, US: Scrivener Publishing LLC. https://doi.org/10.1002/9781119621201.ch11
Alreshidi, E. (2019). Smart sustainable agriculture (SSA) solution underpinned by internet of things (IoT) and artificial intelligence (AI). International Journal of Advanced Computer Science and Applications, 10(5), 93-102. https://doi.org/10.14569/IJACSA.2019.0100513
Balaska, V., Adamidou, Z., Vryzas, Z., & Gasteratos, A. (2023). Sustainable crop protection via robotics and artificial intelligence solutions. Machines, 11(8), 774. https://doi.org/10.3390/machines11080774
Dara, R., Fard, S. M. H., & Kaur, J. (2022). Recommendations for ethical and responsible use of artificial intelligence in digital agriculture. Frontiers in Artificial Intelligence, 5, 884192. https://doi.org/10.3389/frai.2022.884192
Dharmaraj, V., & Vijayanand, C. (2018). Artificial intelligence (AI) in agriculture. International Journal of Current Microbiology and Applied Sciences, 7(12), 2122-2128. https://doi.org/10.20546/ijcmas.2018.712.241
Goralski, M. A., & Tan, T. K. (2020). Artificial intelligence and sustainable development. The International Journal of Management Education, 18(1), 100330. https://doi.org/10.1016/j.ijme.2019.100330
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15-30. https://doi.org/10.1016/j.aac.2022.10.001
Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1-12. https://doi.org/10.1016/j.aiia.2019.05.004
Khandelwal, P. M., & Chavhan, H. (2019). Artificial intelligence in agriculture: An emerging era of research. ResearchGate Publication, 1(1), 56-60.
Lakshmi, V., & Corbett, J. (2020). How artificial intelligence improves agricultural productivity and sustainability: A global thematic analysis. Proceedings of the 53rd Hawaii International Conference on System Sciences (pp. 5202-5211). ScholarSpace. https://doi.org/10.24251/HICSS.2020.639
Maraveas, C. (2022). Incorporating artificial intelligence technology in smart greenhouses: Current State of the Art. Applied Sciences, 13(1), 14. https://doi.org/10.3390/app13010014
Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Applied Sciences, 11(13), 5911. https://doi.org/10.3390/app11135911
Mishra, H., & Mishra, D. (2023). Artificial intelligence and machine learning in agriculture: Transforming farming systems. In Research Trends in Agriculture Science (Vol. 1, pp. 1-16) Maharashtra, India: Bhumi Publishing. https://doi.org/10.5281/zenodo.15157536
Mishra, H., & Mishra, D. (2024). Economic Evaluation of UAV-Based Soil Sampling Approaches. In S. S. Chouhan, U. P. Singh & S. Jain (Eds.), Applications of Computer Vision and Drone Technology in Agriculture 4.0 (pp. 271-291) Singapore: Springer. https://doi.org/10.1007/978-981-99-8684-2_15
Mishra, H., Nishad, D. C., Tiwari, A. K., Singh, R., & Mishra, D. (2024). Market Forecasting and Price Analysis with Artificial Intelligence in Agriculture. In S. A. Waske, P. K. Thakar, N. Bhavya & A. Singh (Eds.), Advances in Agriculture Sciences (Vol. 4, pp. 98-117) Maharashtra, India: Bhumi Publishing.
Nishad, D. C., Mishra, H., Tiwari, A. K., & Mishra, D. (2024). Post-Harvest Management: Enhancing Food Security and Sustainability. In G. Singh, P. Singh, A. K. Pandey & S. S. Rokade (Eds.), Advances in Agriculture Sciences (Vol. 2, pp. 136-152) Maharashtra, India: Bhumi Publishing.
Nishad, D. C., Mishra, H., Tiwari, A. K., Singh, R., & Mishra, D. (2024). Economic Realities and Sociocultural Dynamics in Modern Agriculture. In S. A. Waske, P. K. Thakar, N. Bhavya & A. Singh (Eds.), Advances in Agriculture Sciences (Vol. 4, pp. 66-82). Maharashtra, India: Bhumi Publishing.
Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104
Sachithra, V., & Subhashini, L. D. C. S. (2023). How artificial intelligence uses to achieve the agriculture sustainability: Systematic review. Artificial Intelligence in Agriculture, 8, 46-59. https://doi.org/10.1016/j.aiia.2023.04.002
Salehi, F. (2024). The Role of Artificial Intelligence in Revolutionizing the Agriculture Industry in Canada. Asian Journal of Research and Review in Agriculture, 6(1), 70-78.
Sarfraz, S., Ali, F., Hameed, A., Ahmad, Z., & Riaz, K. (2023). Sustainable agriculture through technological innovations. In C. S. Prakash, S. Fiaz, M. A. Nadeem, F. S. Baloch & A. Qayyum (Eds.), Sustainable agriculture in the era of the OMICs revolution (pp. 223-239). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-031-15568-0_10
Shaikh, F. K., Memon, M. A., Mahoto, N. A., Zeadally, S., & Nebhen, J. (2021). Artificial intelligence best practices in smart agriculture. IEEE Micro, 42, 17-24. https://doi.org/10.1109/MM.2021.3121279
Smith, M. J. (2018). Getting value from artificial intelligence in agriculture. Animal Production Science, 60, 46-54. https://doi.org/10.1071/AN18522
Sood, A., Bhardwaj, A. K., & Sharma, R. K. (2022). Towards sustainable agriculture: key determinants of adopting artificial intelligence in agriculture. Journal of Decision Systems, 33(4), 833-877. https://doi.org/10.1080/12460125.2022.2154419
Sood, A., Sharma, R. K., & Bhardwaj, A. K. (2022). Artificial intelligence research in agriculture: a review. Online Information Review, 46(6), 1054-1075. https://doi.org/10.1108/OIR-10-2020-0448
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73. https://doi.org/10.1016/j.aiia.2020.04.002
Taneja, A., Nair, G., Joshi, M., Sharma, S., Sharma, S., Jambrak, A. R., Roselló-Soto, E., Barba, F. J., Castagnini, J. M., Leksawasdi, N., & Phimolsiripol, Y. (2023). Artificial intelligence: Implications for the agri-food sector. Agronomy, 13(5), 1397. https://doi.org/10.3390/agronomy13051397
Tiwari, A. K., Mishra, H., Nishad, D. C., & Pandey, A. (2023). Sustainable water management in agriculture: irrigation techniques and water conservation. In M. Baruah, A. Bhogave, A. B. Jadhao & R. Mallik (Eds.), Research Trends in Agriculture Science (Vol. 2, pp. 53-66) Maharashtra, India: Bhumi Publishing.
Zhang, P., Guo, Z., Ullah, S., Melagraki, G., Afantitis, A., & Lynch, I. (2021). Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nature Plants, 7, 864-876. https://doi.org/10.1038/s41477-021-00946-6
Published
How to Cite
Issue
Section
Copyright (c) 2025 Harshit Mishra

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.