Leveraging deep learning for plant disease identification: a bibliometric analysis in SCOPUS from 2018 to 2024
DOI:
https://doi.org/10.25081/jsa.2025.v9.9412Keywords:
Deep learning, Plant disease diagnosis, Generative modeling, Bibliometric analysisAbstract
This work aimed to present a bibliometric analysis of deep learning research for plant disease identification, with a special focus on generative modeling. A thorough analysis of SCOPUS-sourced bibliometric data from 253 documents was performed. Key performance metrics such as accuracy, precision, recall, and F1-score were analyzed for generative modeling. The findings highlighted significant contributions from some authors Too and Arnal Barbedo, whose works had notable citation counts, suggesting their influence on the academic community. Co-authorship networks revealed strong collaborative clusters, while keyword analysis identified emerging research gaps. This study highlights the role of collaboration and citation metrics in shaping research directions and enhancing the impact of scholarly work in applications of deep learning to plant disease identification. Future research should explore the methodologies of highly cited studies to inform best practices and policy-making.
Downloads
References
Abrar, S., & Samad, M. D. (2022). Perturbation of deep autoencoder weights for model compression and classification of tabular data. Neural Networks, 156, 160-169. https://doi.org/10.1016/j.neunet.2022.09.020
Ahmad, A., Saraswat, D., & El Gamal, A. (2023). A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agricultural Technology, 3, 100083. https://doi.org/10.1016/j.atech.2022.100083
Ahmed, I., & Yadav, P. K. (2023). A systematic analysis of machine learning and deep learning based approaches for identifying and diagnosing plant diseases. Sustainable Operations and Computers, 4, 96-104. https://doi.org/10.1016/j.susoc.2023.03.001
Ali, T., Rehman, S. U., Ali, S., Mahmood, K., Obregon, S. A., Iglesias, R. C., Khurshaid, T., & Ashraf, I. (2024). Smart agriculture: Utilizing machine learning and deep learning for drought stress identification in crops. Scientific Reports, 14, 30062. https://doi.org/10.1038/s41598-024-74127-8
Alimisis, P., Mademlis, I., Radoglou-Grammatikis, P., Sarigiannidis, P., & Papadopoulos, G. T. (2024). Advances in Diffusion Models for Image Data Augmentation: A Review of Methods, Models, Evaluation Metrics and Future Research Directions. arXiv, arXiv:2407.04103. https://doi.org/10.48550/arXiv.2407.04103
Alshammari, K., Alshammari, R., Alshammari, A., & Alkhudaydi, T. (2024). An improved pear disease classification approach using cycle generative adversarial network. Scientific Reports, 14, 6680. https://doi.org/10.1038/s41598-024-57143-6
Altalak, M., Ammad uddin, M., Alajmi, A., & Rizg, A. (2022). Smart Agriculture Applications Using Deep Learning Technologies: A Survey. Applied Sciences, 12(12), 5919. https://doi.org/10.3390/app12125919
Alzahrani, M. S., & Alsaade, F. W. (2023). Transform and Deep Learning Algorithms for the Early Detection and Recognition of Tomato Leaf Disease. Agronomy, 13(5), 1184. https://doi.org/10.3390/agronomy13051184
Amara, J., König-Ries, B., & Samuel, S. (2024). Explainability of Deep Learning-Based Plant Disease Classifiers Through Automated Concept Identification. arXiv, arXiv:2412.07408. https://doi.org/10.48550/arXiv.2412.07408
Amyar, A., Ruan, S., Vera, P., Decazes, P., & Modzelewski, R. (2020). RADIOGAN: Deep Convolutional Conditional Generative Adversarial Network To Generate PET Images. arXiv, arXiv:2003.08663. https://doi.org/10.48550/arXiv.2003.08663
An, T., & Joo, C. (2023). CycleGANAS: Differentiable Neural Architecture Search for CycleGAN. arXiv, arXiv:2311.07162. https://doi.org/10.48550/arXiv.2311.07162
Andrew, J., Eunice, J., Popescu, D. E., Chowdary, M. K., & Hemanth, J. (2022). Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications. Agronomy, 12(10), 2395. https://doi.org/10.3390/agronomy12102395
Antoniou, A., Storkey, A., & Edwards, H. (2018). Data Augmentation Generative Adversarial Networks. arXiv, arXiv:1711.04340. https://doi.org/10.48550/arXiv.1711.04340
Aslan, S., Güdükbay, U., Töreyin, B. U., & Çetin, A. E. (2019). Deep Convolutional Generative Adversarial Networks Based Flame Detection in Video. arXiv, arXiv:1902.01824. https://doi.org/10.48550/arXiv.1902.01824
Baghel, N., Dubey, S. R., & Singh, S. K. (2023). SRTransGAN: Image Super-Resolution using Transformer based Generative Adversarial Network. arXiv, arXiv:2312.01999. https://doi.org/10.48550/arXiv.2312.01999
Baig, Y., Ma, H. R., Xu, H., & You, L. (2023). Autoencoder neural networks enable low dimensional structure analyses of microbial growth dynamics. Nature Communications, 14, 7937. https://doi.org/10.1038/s41467-023-43455-0
Bandyopadhyay, S., Dion, C., Libon, D. J., Price, C., Tighe, P., & Rashidi, P. (2022). Variational autoencoder provides proof of concept that compressing CDT to extremely low-dimensional space retains its ability of distinguishing dementia. Scientific Reports, 12, 7992. https://doi.org/10.1038/s41598-022-12024-8
Bank, D., Koenigstein, N., & Giryes, R. (2021). Autoencoders. arXiv, arXiv:2003.05991. https://doi.org/10.48550/arXiv.2003.05991
Benfenati, A., Causin, P., Oberti, R., & Stefanello, G. (2023). Unsupervised deep learning techniques for automatic detection of plant diseases: Reducing the need of manual labelling of plant images. Journal of Mathematics in Industry, 13, 5. https://doi.org/10.1186/s13362-023-00133-6
Berahmand, K., Daneshfar, F., Salehi, E. S., Li, Y., & Xu, Y. (2024). Autoencoders and their applications in machine learning: A survey. Artificial Intelligence Review, 57, 28. https://doi.org/10.1007/s10462-023-10662-6
Bertrand, J. H., Gargano, J. P., Mombaerts, L., & Taws, J. (2024). Autoencoder-based General Purpose Representation Learning for Customer Embedding. arXiv, arXiv:2402.18164. https://doi.org/10.48550/arXiv.2402.18164
Bhuvana, J., & Mirnalinee, T. T. (2021). An approach to Plant Disease Detection using Deep Learning Techniques. Iteckne, 18(2), 161-169. https://doi.org/10.15332/iteckne.v18i2.2615
Bi, L., & Hu, G. (2020). Improving Image-Based Plant Disease Classification With Generative Adversarial Network Under Limited Training Set. Frontiers in Plant Science, 11, 583438. https://doi.org/10.3389/fpls.2020.583438
Blarr, J., Klinder, S., Liebig, W. V., Inal, K., Kärger, L., & Weidenmann, K. A. (2024). Deep convolutional generative adversarial network for generation of computed tomography images of discontinuously carbon fiber reinforced polymer microstructures. Scientific Reports, 14, 9641. https://doi.org/10.1038/s41598-024-59252-8
Bolluyt, E. D., & Comaniciu, C. (2019). Collapse Resistant Deep Convolutional GAN for Multi-Object Image Generation. arXiv, arXiv:1911.02996. https://doi.org/10.48550/arXiv.1911.02996
Boulahbal, H. eddine, Voicila, A., & Comport, A. (2022). Are conditional GANs explicitly conditional? arXiv, arXiv:2106.15011. https://doi.org/10.48550/arXiv.2106.15011
Bourlard, H., & Kabil, S. H. (2022). Autoencoders reloaded. Biological Cybernetics, 116, 389-406. https://doi.org/10.1007/s00422-022-00937-6
Bunker, J., Girolami, M., Lambley, H., Stuart, A. M., & Sullivan, T. J. (2024). Autoencoders in Function Space. arXiv, arXiv:2408.01362. https://doi.org/10.48550/arXiv.2408.01362
Cakmak, A. S., Thigpen, N., Honke, G., Alday, E. P., Rad, A. B., Adaimi, R., Chang, C. J., Li, Q., Gupta, P., Neylan, T., McLean, S. A., & Clifford, G. D. (2020). Using Convolutional Variational Autoencoders to Predict Post-Trauma Health Outcomes from Actigraphy Data. arXiv, arXiv:2011.07406. https://doi.org/10.48550/arXiv.2011.07406
Casale, F. P., Dalca, A. V., Saglietti, L., Listgarten, J., & Fusi, N. (2018). Gaussian Process Prior Variational Autoencoders. arXiv, arXiv:1810.11738. https://doi.org/10.48550/arXiv.1810.11738
Cemgil, A. T., Ghaisas, S., Dvijotham, K., Gowal, S., & Kohli, P. (2020). Autoencoding Variational Autoencoder. arXiv, arXiv:2012.03715. https://doi.org/10.48550/arXiv.2012.03715
Chandrakala, S., & Vishnika, V. S. (2024). Denoising Convolutional Autoencoder Based Approach for Disordered Speech Recognition. International Journal on Artificial Intelligence Tools, 33(1), 2350058. https://doi.org/10.1142/S0218213023500586
Che, Q.-H., Le, D.-T., & Nguyen, V.-T. (2024). Enhanced Generative Data Augmentation for Semantic Segmentation via Stronger Guidance. arXiv, arXiv:2409.06002. https://doi.org/10.48550/arXiv.2409.06002
Chen, C., Liu, W., Tan, X., & Wong, K.-Y. K. (2023). Semi-supervised Cycle-GAN for face photo-sketch translation in the wild. arXiv, arXiv:2307.10281. https://doi.org/10.48550/arXiv.2307.10281
Chen, J., & Shi, X. (2019). Sparse Convolutional Denoising Autoencoders for Genotype Imputation. Genes, 10(9), 652. https://doi.org/10.3390/genes10090652
Chen, R., Qi, H., Liang, Y., & Yang, M. (2022). Identification of plant leaf diseases by deep learning based on channel attention and channel pruning. Frontiers in Plant Science, 13, 1023515. https://doi.org/10.3389/fpls.2022.1023515
Chen, S., & Guo, W. (2023). Auto-Encoders in Deep Learning—A Review with New Perspectives. Mathematics, 11(8), 1777. https://doi.org/10.3390/math11081777
Chen, Y., Yan, Z., & Zhu, Y. (2024). A Unified Framework for Generative Data Augmentation: A Comprehensive Survey. arXiv, arXiv:2310.00277. https://doi.org/10.48550/arXiv.2310.00277
Chen, Z., & Tong, Y. (2017). Face Super-Resolution Through Wasserstein GANs. arXiv, arXiv:1705.02438. https://doi.org/10.48550/arXiv.1705.02438
Cheng, L., Guan, P., Taherkordi, A., Liu, L., & Lan, D. (2024). Variational autoencoder-based neural network model compression. arXiv, arXiv:2408.14513. https://doi.org/10.48550/arXiv.2408.14513
Chiba, N., Suzuki, Y., Taniai, T., Igarashi, R., Ushiku, Y., Saito, K., & Ono, K. (2023). Neural structure fields with application to crystal structure autoencoders. Communications Materials, 4, 106. https://doi.org/10.1038/s43246-023-00432-w
Choi, J., Kim, Y., Kim, K.-H., Jung, S.-H., & Cho, I. (2023). PCT-CycleGAN: Paired Complementary Temporal Cycle-Consistent Adversarial Networks for Radar-Based Precipitation Nowcasting. arXiv, arXiv:2211.15046. https://doi.org/10.48550/arXiv.2211.15046
Creswell, A., Arulkumaran, K., & Bharath, A. A. (2017). On denoising autoencoders trained to minimise binary cross-entropy. arXiv, arXiv:1708.08487. https://doi.org/10.48550/arXiv.1708.08487
Cunningham, H., Ewart, A., Riggs, L., Huben, R., & Sharkey, L. (2023). Sparse Autoencoders Find Highly Interpretable Features in Language Models. arXiv, arXiv:2309.08600. https://doi.org/10.48550/arXiv.2309.08600
Curtó, J. D., Zarza, I. C., Torre, F. de la, King, I., & Lyu, M. R. (2020). High-resolution Deep Convolutional Generative Adversarial Networks. arXiv, arXiv:1711.06491. https://doi.org/10.48550/arXiv.1711.06491
D’Angelo, G., & Palmieri, F. (2021). A stacked autoencoder-based convolutional and recurrent deep neural network for detecting cyberattacks in interconnected power control systems. International Journal of Intelligent Systems, 36, 7080-7102. https://doi.org/10.1002/int.22581
Dai, D., Xia, P., Zhu, Z., & Che, H. (2023). MTDL-EPDCLD: A Multi-Task Deep-Learning-Based System for Enhanced Precision Detection and Diagnosis of Corn Leaf Diseases. Plants, 12(13), 2433. https://doi.org/10.3390/plants12132433
DeVries, T., Romero, A., Pineda, L., Taylor, G. W., & Drozdzal, M. (2019). On the Evaluation of Conditional GANs. arXiv, arXiv:1907.08175. https://doi.org/10.48550/arXiv.1907.08175
Dhaka, V. S., Kundu, N., Rani, G., Zumpano, E., & Vocaturo, E. (2023a). Role of Internet of Things and Deep Learning Techniques in Plant Disease Detection and Classification: A Focused Review. Sensors, 23(18), 7877. https://doi.org/10.3390/s23187877
Doersch, C. (2021). Tutorial on Variational Autoencoders. arXiv, arXiv:1606.05908. https://doi.org/10.48550/arXiv.1606.05908
Förster, A., Behley, J., Behmann, J., & Roscher, R. (2019). Hyperspectral Plant Disease Forecasting Using Generative Adversarial Networks. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 1793-1796. https://doi.org/10.1109/IGARSS.2019.8898749
Frizza, T., Dansereau, D. G., Seresht, N. M., & Bewley, M. (2022). Semantically Accurate Super-Resolution Generative Adversarial Networks. arXiv, arXiv:2205.08659. https://doi.org/10.48550/arXiv.2205.08659
Fu, Y., Chen, C., Qiao, Y., & Yu, Y. (2024). DreamDA: Generative Data Augmentation with Diffusion Models. arXiv, arXiv:2403.12803. https://doi.org/10.48550/arXiv.2403.12803
Gao, L., Tour, T. D. la, Tillman, H., Goh, G., Troll, R., Radford, A., Sutskever, I., Leike, J., & Wu, J. (2024). Scaling and evaluating sparse autoencoders. arXiv, arXiv:2406.04093. https://doi.org/10.48550/arXiv.2406.04093
Ghafar, A., Chen, C., Shah, S. A. A., Ur Rehman, Z., & Rahman, G. (2024). Visualizing Plant Disease Distribution and Evaluating Model Performance for Deep Learning Classification with YOLOv8. Pathogens, 13(12), 1032. https://doi.org/10.3390/pathogens13121032
Ghosh, P., Sajjadi, M. S. M., Vergari, A., Black, M., & Schölkopf, B. (2020). From Variational to Deterministic Autoencoders. arXiv, arXiv:1903.12436. https://doi.org/10.48550/arXiv.1903.12436
Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., & Alameda-Pineda, X. (2022). Dynamical Variational Autoencoders: A Comprehensive Review. arXiv, arXiv:2008.12595. https://doi.org/10.48550/arXiv.2008.12595
Giuliano, A., Gadsden, S. A., Hilal, W., & Yawney, J. (2024). Convolutional variational autoencoders for secure lossy image compression in remote sensing. arXiv, arXiv:2404.03696. https://doi.org/10.48550/arXiv.2404.03696
Gomari, D. P., Schweickart, A., Cerchietti, L., Paietta, E., Fernandez, H., Al-Amin, H., Suhre, K., & Krumsiek, J. (2022). Variational autoencoders learn transferrable representations of metabolomics data. Communications Biology, 5, 645. https://doi.org/10.1038/s42003-022-03579-3
Gong, Y., Zhan, Z., Jin, Q., Li, Y., Idelbayev, Y., Liu, X., Zharkov, A., Aberman, K., Tulyakov, S., Wang, Y., & Ren, J. (2024). E2 GAN: Efficient Training of Efficient GANs for Image-to-Image Translation. arXiv, arXiv:2401.06127. https://doi.org/10.48550/arXiv.2401.06127
González-Rodríguez, V. E., Izquierdo-Bueno, I., Cantoral, J. M., Carbú, M., & Garrido, C. (2024). Artificial Intelligence: A Promising Tool for Application in Phytopathology. Horticulturae, 10(3), 197. https://doi.org/10.3390/horticulturae10030197
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. arXiv, arXiv:1406.2661. https://doi.org/10.48550/arXiv.1406.2661
Gu, Y. H., Yin, H., Jin, D., Zheng, R., & Yoo, S. J. (2022). Improved Multi-Plant Disease Recognition Method Using Deep Convolutional Neural Networks in Six Diseases of Apples and Pears. Agriculture, 12(2), 300. https://doi.org/10.3390/agriculture12020300
Güemes, A., Vila, C. S., & Discetti, S. (2022). Super-resolution GANs of randomly-seeded fields. arXiv, arXiv:2202.11701. https://doi.org/10.48550/arXiv.2202.11701
Gulamali, F. F., Sawant, A. S., Kovatch, P., Glicksberg, B., Charney, A., Nadkarni, G. N., & Oermann, E. (2022). Autoencoders for sample size estimation for fully connected neural network classifiers. NPJ Digital Medicine, 5, 180. https://doi.org/10.1038/s41746-022-00728-0
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved Training of Wasserstein GANs. arXiv, arXiv:1704.00028. https://doi.org/10.48550/arXiv.1704.00028
Guo, Y., Zhang, J., Yin, C., Hu, X., Zou, Y., Xue, Z., & Wang, W. (2020). Plant Disease Identification Based on Deep Learning Algorithm in Smart Farming. Discrete Dynamics in Nature and Society, 2020, 2479172. https://doi.org/10.1155/2020/2479172
Hasan, R. I., Yusuf, S. M., & Alzubaidi, L. (2020). Review of the State of the Art of Deep Learning for Plant Diseases: A Broad Analysis and Discussion. Plants, 9(10), 1302. https://doi.org/10.3390/plants9101302
He, Y., Zhang, Z., Zhu, J., Shen, Y., & Chen, Q. (2022). Interpreting Class Conditional GANs with Channel Awareness. arXiv, arXiv:2203.11173. https://doi.org/10.48550/arXiv.2203.11173
He, Z., Kan, M., & Shan, S. (2021). EigenGAN: Layer-Wise Eigen-Learning for GANs. arXiv, arXiv:2104.12476. https://doi.org/10.48550/arXiv.2104.12476
Hemalatha, S., & Jayachandran, J. J. B. (2024). A Multitask Learning-Based Vision Transformer for Plant Disease Localization and Classification. International Journal of Computational Intelligence Systems, 17(1), 188. https://doi.org/10.1007/s44196-024-00597-3
Hou, L., Cao, Q., Shen, H., Pan, S., Li, X., & Cheng, X. (2022). Conditional GANs with Auxiliary Discriminative Classifier. arXiv, arXiv:2107.10060. https://doi.org/10.48550/arXiv.2107.10060
Hu, Y., Chu, X., & Zhang, B. (2024). Masked Autoencoders Are Robust Neural Architecture Search Learners. arXiv, arXiv:2311.12086. https://doi.org/10.48550/arXiv.2311.12086
Huang, G., & Jafari, A. H. (2021). Enhanced balancing GAN: Minority-class image generation. Neural Computing and Applications, 35, 5145-5145. https://doi.org/10.1007/s00521-021-06163-8
Huang, T., Chakraborty, P., & Sharma, A. (2020). Deep convolutional generative adversarial networks for traffic data imputation encoding time series as images. arXiv, arXiv:2005.04188. https://doi.org/10.48550/arXiv.2005.04188
Huang, Y., & Omachi, S. (2023). Infrared Image Super-Resolution via GAN. arXiv, arXiv:2312.00689. https://doi.org/10.48550/arXiv.2312.00689
Hughes, D. P., & Salathe, M. (2016). An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv, arXiv:1511.08060. https://doi.org/10.48550/arXiv.1511.08060
Iacono, P., & Khan, N. (2023). Structure Preserving Cycle-GAN for Unsupervised Medical Image Domain Adaptation. arXiv, arXiv:2304.09164. https://doi.org/10.48550/arXiv.2304.09164
Iakovenko, O., & Bondarenko, I. (2024). Convolutional Variational Autoencoders for Spectrogram Compression in Automatic Speech Recognition. arXiv, arXiv:2410.02560. https://doi.org/10.48550/arXiv.2410.02560
Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2018). Image-to-Image Translation with Conditional Adversarial Networks. arXiv, arXiv:1611.07004. https://doi.org/10.48550/arXiv.1611.07004
Jafar, A., Bibi, N., Naqvi, R. A., Sadeghi-Niaraki, A., & Jeong, D. (2024). Revolutionizing agriculture with artificial intelligence: Plant disease detection methods, applications, and their limitations. Frontiers in Plant Science, 15, 1356260. https://doi.org/10.3389/fpls.2024.1356260
Jolicoeur-Martineau, A., & Mitliagkas, I. (2020). Gradient penalty from a maximum margin perspective. arXiv, arXiv:1910.06922. https://doi.org/10.48550/arXiv.1910.06922
Jung, M., Song, J. S., Shin, A.-Y., Choi, B., Go, S., Kwon, S.-Y., Park, J., Park, S. G., & Kim, Y.-M. (2023). Construction of deep learning-based disease detection model in plants. Scientific Reports, 13, 7331. https://doi.org/10.1038/s41598-023-34549-2
Kang, M., Zhang, R., Barnes, C., Paris, S., Kwak, S., Park, J., Shechtman, E., Zhu, J.-Y., & Park, T. (2024). Distilling Diffusion Models into Conditional GANs. arXiv, arXiv:2405.05967. https://doi.org/10.48550/arXiv.2405.05967
Kas, M., Chahi, A., Kajo, I., & Ruichek, Y. (2024). EigenGAN: An SVD subspace-based learning for image generation using Conditional GAN. Knowledge-Based Systems, 293, 111691. https://doi.org/10.1016/j.knosys.2024.111691
Kebaili, A., Lapuyade-Lahorgue, J., & Ruan, S. (2023). Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review. arXiv, arXiv:2307.13125. https://doi.org/10.48550/arXiv.2307.13125
Kim, C., Park, S., & Hwang, H. J. (2018). Local Stability and Performance of Simple Gradient Penalty mu-Wasserstein GAN. arXiv, arXiv:1810.02528. https://doi.org/10.48550/arXiv.1810.02528
Kinakh, V., Drozdova, M., Quétant, G., Golling, T., & Voloshynovskiy, S. (2021). Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN. arXiv, arXiv:2112.09653. https://doi.org/10.48550/arXiv.2112.09653
Kingma, D. P., & Welling, M. (2019). An Introduction to Variational Autoencoders. arXiv, arXiv:1906.02691. https://doi.org/10.48550/arXiv.1906.02691
Kingma, D. P., & Welling, M. (2022). Auto-Encoding Variational Bayes. arXiv, arXiv:1312.6114. https://doi.org/10.48550/arXiv.1312.6114
Kipf, T. N., & Welling, M. (2016). Variational Graph Auto-Encoders. arXiv, arXiv:1611.07308. https://doi.org/10.48550/arXiv.1611.07308
Krishna, P. A., Padhy, N., & Patnaik, A. (2024). Applying Machine Learning for Sustainable Farm Management: Integrating Crop Recommendations and Disease Identification. Engineering Proceedings, 67(1), 7073. https://doi.org/10.3390/engproc2024067073
Krishnakumar, D. P., & Balasubrahmanyan, K. (2024). An Improved EigenGAN-Based Method for Data Augmentation for Plant Disease Classification. International Information and Engineering Technology Association, 38(1), 237-242. https://doi.org/10.18280/ria.380124
Kuznedelev, D., Startsev, V., Shlenskii, D., & Kastryulin, S. (2024). Does Diffusion Beat GAN in Image Super Resolution? arXiv, arXiv:2405.17261. https://doi.org/10.48550/arXiv.2405.17261
Kwon, D., Kim, Y., Montúfar, G., & Yang, I. (2021). Training Wasserstein GANs without gradient penalties. arXiv, arXiv:2110.14150. https://doi.org/10.48550/arXiv.2110.14150
Lebrini, Y., & Ayerdi Gotor, A. (2024). Crops Disease Detection, from Leaves to Field: What We Can Expect from Artificial Intelligence. Agronomy, 14(11), 2719. https://doi.org/10.3390/agronomy14112719
Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., & Shi, W. (2016). Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. arXiv, arXiv:1609.04802. https://doi.org/10.48550/arXiv.1609.04802
Lee, D., Choi, S., & Kim, H.-J. (2018). Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 884, 97-104. https://doi.org/10.1016/j.nima.2017.12.050
Lee, Y. (2023). A Geometric Perspective on Autoencoders. arXiv, arXiv:2309.08247. https://doi.org/10.48550/arXiv.2309.08247
Lei, H., & Yang, Y. (2021). CDAE: A Cascade of Denoising Autoencoders for Noise Reduction in the Clustering of Single-Particle Cryo-EM Images. Frontiers in Genetics, 11, 627746. https://doi.org/10.3389/fgene.2020.627746
Lingenberg, T., Reuter, M., Sudhakaran, G., Gojny, D., Roth, S., & Schaub-Meyer, S. (2024). DIAGen: Diverse Image Augmentation with Generative Models. arXiv, arXiv:2408.14584. https://doi.org/10.48550/arXiv.2408.14584
Liu, B., Wei, S., Zhang, F., Guo, N., Fan, H., & Yao, W. (2024). Tomato leaf disease recognition based on multi-task distillation learning. Frontiers in Plant Science, 14, 1330527. https://doi.org/10.3389/fpls.2023.1330527
Lopes, F. A., Sagan, V., & Esposito, F. (2023). PlantPlotGAN: A Physics-Informed Generative Adversarial Network for Plant Disease Prediction. arXiv, arXiv:2310.18268. https://doi.org/10.48550/arXiv.2310.18268
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2016). Adversarial Autoencoders. arXiv, arXiv:1511.05644. https://doi.org/10.48550/arXiv.1511.05644
Manduchi, L., Vandenhirtz, M., Ryser, A., & Vogt, J. (2023). Tree Variational Autoencoders. arXiv, arXiv:2306.08984. https://doi.org/10.48550/arXiv.2306.08984
Martino, G., Moroni, D., & Martinelli, M. (2023). Are We Using Autoencoders in a Wrong Way? arXiv, arXiv:2309.01532. https://doi.org/10.48550/arXiv.2309.01532
Merkelbach, K., Schaper, S., Diedrich, C., Fritsch, S. J., & Schuppert, A. (2023). Novel architecture for gated recurrent unit autoencoder trained on time series from electronic health records enables detection of ICU patient subgroups. Scientific Reports, 13, 4053. https://doi.org/10.1038/s41598-023-30986-1
Michelucci, U. (2022). An Introduction to Autoencoders. arXiv, arXiv:2201.03898. https://doi.org/10.48550/arXiv.2201.03898
Milne, T., & Nachman, A. (2022). Wasserstein GANs with Gradient Penalty Compute Congested Transport. arXiv, arXiv:2109.00528. https://doi.org/10.48550/arXiv.2109.00528
Min, B., Kim, T., Shin, D., & Shin, D. (2023). Data Augmentation Method for Plant Leaf Disease Recognition. Applied Sciences, 13(3), 1465. https://doi.org/10.3390/app13031465
Miranda, M., Zabawa, L., Kicherer, A., Strothmann, L., Rascher, U., & Roscher, R. (2022). Detection of Anomalous Grapevine Berries Using Variational Autoencoders. Frontiers in Plant Science, 13, 729097. https://doi.org/10.3389/fpls.2022.729097
Mirza, B., Haroon, D., Khan, B., Padhani, A., & Syed, T. Q. (2021). Deep Generative Models to Counter Class Imbalance: A Model-Metric Mapping With Proportion Calibration Methodology. IEEE Access, 9, 55879-55897. https://doi.org/10.1109/ACCESS.2021.3071389
Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv, arXiv:1411.1784. https://doi.org/10.48550/arXiv.1411.1784
Mishra, A., & Pathak, T. (2021). Deep Convolutional Generative Modeling for Artificial Microstructure Development of Aluminum-Silicon Alloy. arXiv, arXiv:2109.06635. https://doi.org/10.48550/arXiv.2109.06635
Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using Deep Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science, 7, 1419. https://doi.org/10.3389/fpls.2016.01419
Moyes, A., Gault, R., Zhang, K., Ming, J., Crookes, D., & Wang, J. (2023). Multi-channel auto-encoders for learning domain invariant representations enabling superior classification of histopathology images. Medical Image Analysis, 83, 102640. https://doi.org/10.1016/j.media.2022.102640
Mustofa, S., Munna, M. M. H., Emon, Y. R., Rabbany, G., & Ahad, M. T. (2023). A comprehensive review on Plant Leaf Disease detection using Deep learning. arXiv, arXiv:2308.14087. https://doi.org/10.48550/arXiv.2308.14087
Myers, J., Najafian, K., Maleki, F., & Ovens, K. (2024). Modified CycleGAN for the synthesization of samples for wheat head segmentation. arXiv, arXiv:2402.15135. https://doi.org/10.48550/arXiv.2402.15135
Nagaraj, G., Sungeetha, D., Tiwari, M., Ahuja, V., Varma, A. K., & Agarwal, P. (2024). Advancements in Plant Pests Detection: Leveraging Convolutional Neural Networks for Smart Agriculture. Engineering Proceedings, 59(1), 201. https://doi.org/10.3390/engproc2023059201
Nanavaty, A., Sharma, R., Pandita, B., Goyal, O., Rallapalli, S., Mandal, M., Singh, V. K., Narang, P., & Chamola, V. (2024). Integrating deep learning for visual question answering in Agricultural Disease Diagnostics: Case Study of Wheat Rust. Scientific Reports, 14, 28203. https://doi.org/10.1038/s41598-024-79793-2
Natarajan, S., Chakrabarti, P., & Margala, M. (2024). Robust diagnosis and meta visualizations of plant diseases through deep neural architecture with explainable AI. Scientific Reports, 14, 13695. https://doi.org/10.1038/s41598-024-64601-8
Ngugi, H. N., Akinyelu, A. A., & Ezugwu, A. E. (2024). Machine Learning and Deep Learning for Crop Disease Diagnosis: Performance Analysis and Review. Agronomy, 14(12), 3001. https://doi.org/10.3390/agronomy14123001
Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., & Kwasniewski, M. T. (2021). Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning. Sensors, 21(3), 742. https://doi.org/10.3390/s21030742
Nigam, S., & Jain, R. (2020). Plant disease identification using Deep Learning: A review. The Indian Journal of Agricultural Sciences, 90(2), 249-257. https://doi.org/10.56093/ijas.v90i2.98996
Omer, S. M., Ghafoor, K. Z., & Askar, S. K. (2023). Plant Disease Diagnosing Based on Deep Learning Techniques. Aro-The Scientific Journal of Koya University, 11(1), 38-47. https://doi.org/10.14500/aro.11080
Pacal, I., Kunduracioglu, I., Alma, M. H., Deveci, M., Kadry, S., Nedoma, J., Slany, V., & Martinek, R. (2024). A systematic review of deep learning techniques for plant diseases. Artificial Intelligence Review, 57, 304. https://doi.org/10.1007/s10462-024-10944-7
Pan, T., Pedrycz, W., Yang, J., & Wang, J. (2024). An improved generative adversarial network to oversample imbalanced datasets. Engineering Applications of Artificial Intelligence, 132, 107934. https://doi.org/10.1016/j.engappai.2024.107934
Papadopoulos, D., & Karalis, V. D. (2023). Variational Autoencoders for Data Augmentation in Clinical Studies. Applied Sciences, 13(15), 8793. https://doi.org/10.3390/app13158793
Prajapati, H. B., Shah, J. P., & Dabhi, V. K. (2017). Detection and classification of rice plant diseases. Intelligent Decision Technologies, 11(3), 357-373. https://doi.org/10.3233/IDT-170301
Prakash, M., Krull, A., & Jug, F. (2021). Fully Unsupervised Diversity Denoising with Convolutional Variational Autoencoders. arXiv, arXiv:2006.06072. https://doi.org/10.48550/arXiv.2006.06072
Qin, Y., Li, Z., Xie, S., Zhao, H., & Wang, Q. (2024). An Efficient Convolutional Denoising Autoencoder-Based BDS NLOS Detection Method in Urban Forest Environments. Sensors, 24(6), 1959. https://doi.org/10.3390/s24061959
Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv, arXiv:1511.06434. https://doi.org/10.48550/arXiv.1511.06434
Radočaj, P., Radočaj, D., & Martinović, G. (2024). Image-Based Leaf Disease Recognition Using Transfer Deep Learning with a Novel Versatile Optimization Module. Big Data and Cognitive Computing, 8(6), 52. https://doi.org/10.3390/bdcc8060052
Rahat, F., Hossain, M. S., Ahmed, M. R., Jha, S. K., & Ewetz, R. (2024). Data Augmentation for Image Classification using Generative AI. arXiv, arXiv:2409.00547. https://doi.org/10.48550/arXiv.2409.00547
Rakhmatulin, I. (2022). Cycle-GAN for eye-tracking. arXiv, arXiv:2205.10556. https://doi.org/10.48550/arXiv.2205.10556
Ramanjot, Mittal, U., Wadhawan, A., Singla, J., Jhanjhi, N. Z., Ghoniem, R. M., Ray, S. K., & Abdelmaboud, A. (2023). Plant Disease Detection and Classification: A Systematic Literature Review. Sensors, 23(10), 4769. https://doi.org/10.3390/s23104769
Rao, K., Harris, C., Irpan, A., Levine, S., Ibarz, J., & Khansari, M. (2020). RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real. arXiv, arXiv:2006.09001. https://doi.org/10.48550/arXiv.2006.09001
Rehana, H., Ibrahim, M., & Ali, M. H. (2023). Plant Disease Detection using Region-Based Convolutional Neural Network. arXiv, arXiv:2303.09063. https://doi.org/10.48550/arXiv.2303.09063
Rehm, F., Vallecorsa, S., Borras, K., & Krücker, D. (2021). Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics Calorimeter Simulations. arXiv, arXiv:2103.13698. https://doi.org/10.48550/arXiv.2103.13698
Rodríguez-Lira, D.-C., Córdova-Esparza, D.-M., Álvarez-Alvarado, J. M., Terven, J., Romero-González, J.-A., & Rodríguez-Reséndiz, J. (2024). Trends in Machine and Deep Learning Techniques for Plant Disease Identification: A Systematic Review. Agriculture, 14(12), 2188. https://doi.org/10.3390/agriculture14122188
Rudolph, M., Wandt, B., & Rosenhahn, B. (2019). Structuring Autoencoders. arXiv, arXiv:1908.02626. https://doi.org/10.48550/arXiv.1908.02626
Sagar, S., Javed, M., & Doermann, D. S. (2023). Leaf-Based Plant Disease Detection and Explainable AI. arXiv, arXiv:2404.16833. https://doi.org/10.48550/arXiv.2404.16833
Sajitha, P., Andrushia, A. D., Anand, N., & Naser, M. Z. (2024). A review on machine learning and deep learning image-based plant disease classification for industrial farming systems. Journal of Industrial Information Integration, 38, 100572. https://doi.org/10.1016/j.jii.2024.100572
Saleem, M. H., Khanchi, S., Potgieter, J., & Arif, K. M. (2020). Image-Based Plant Disease Identification by Deep Learning Meta-Architectures. Plants, 9(11), 1451. https://doi.org/10.3390/plants9111451
Saleem, M. H., Potgieter, J., & Arif, K. M. (2019). Plant Disease Detection and Classification by Deep Learning. Plants, 8(11), 468. https://doi.org/10.3390/plants8110468
Saleem, S., Sharif, M. I., Sharif, M. I., Sajid, M. Z., & Marinello, F. (2024). Comparison of Deep Learning Models for Multi-Crop Leaf Disease Detection with Enhanced Vegetative Feature Isolation and Definition of a New Hybrid Architecture. Agronomy, 14(10), 2230. https://doi.org/10.3390/agronomy14102230
Sandfort, V., Yan, K., Graffy, P. M., Pickhardt, P. J., & Summers, R. M. (2021). Use of Variational Autoencoders with Unsupervised Learning to Detect Incorrect Organ Segmentations at CT. Radiology. Artificial Intelligence, 3(4), e200218. https://doi.org/10.1148/ryai.2021200218
Shete, S., Srinivasan, S., & Gonsalves, T. A. (2020). TasselGAN: An Application of the Generative Adversarial Model for Creating Field-Based Maize Tassel Data. Plant Phenomics, 2020, 8309605. https://doi.org/10.34133/2020/8309605
Shi, C., Xu, T., Bergsma, W., & Li, L. (2021). Double Generative Adversarial Networks for Conditional Independence Testing. arXiv, arXiv:2006.02615. https://doi.org/10.48550/arXiv.2006.02615
Shoaib, M., Shah, B., EI-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., Gechev, T., Hussain, T., & Ali, F. (2023). An advanced deep learning models-based plant disease detection: A review of recent research. Frontiers in Plant Science, 14, 1158933. https://doi.org/10.3389/fpls.2023.1158933
Sim, B., Oh, G., Kim, J., Jung, C., & Ye, J. C. (2020). Optimal Transport driven CycleGAN for Unsupervised Learning in Inverse Problems. arXiv, arXiv:1909.12116. https://doi.org/10.48550/arXiv.1909.12116
Singh, A., & Ogunfunmi, T. (2021). An Overview of Variational Autoencoders for Source Separation, Finance, and Bio-Signal Applications. Entropy, 24(1), 55. https://doi.org/10.3390/e24010055
Skopek, O., Ganea, O.-E., & Bécigneul, G. (2020). Mixed-curvature Variational Autoencoders. arXiv, arXiv:1911.08411. https://doi.org/10.48550/arXiv.1911.08411
Song, J., & Ye, J. C. (2021). Federated CycleGAN for Privacy-Preserving Image-to-Image Translation. arXiv, arXiv:2106.09246. https://doi.org/10.48550/arXiv.2106.09246
Song, Z., Wang, D., Xiao, L., Zhu, Y., Cao, G., & Wang, Y. (2023). DaylilyNet: A Multi-Task Learning Method for Daylily Leaf Disease Detection. Sensors, 23(18), 7879. https://doi.org/10.3390/s23187879
Sun, R., Zhang, M., Yang, K., & Liu, J. (2020). Data Enhancement for Plant Disease Classification Using Generated Lesions. Applied Sciences, 10(2), 466. https://doi.org/10.3390/app10020466
Sun, X., Li, H., & Lee, W.-N. (2023). Constrained CycleGAN for Effective Generation of Ultrasound Sector Images of Improved Spatial Resolution. arXiv, arXiv:2309.00995. https://doi.org/10.48550/arXiv.2309.00995
Tadem, S. P. (2022). CycleGAN with three different unpaired datasets. arXiv, arXiv:2208.06526. https://doi.org/10.48550/arXiv.2208.06526
Thakur, P. S., Khanna, P., Sheorey, T., & Ojha, A. (2022). Explainable vision transformer enabled convolutional neural network for plant disease identification: PlantXViT. arXiv, arXiv:2207.07919. https://doi.org/10.48550/ArXiv.2207.07919
Tian, C., Zhang, X., Lin, J. C.-W., Zuo, W., Zhang, Y., & Lin, C.-W. (2022). Generative Adversarial Networks for Image Super-Resolution: A Survey. arXiv, arXiv:2204.13620. https://doi.org/10.48550/arXiv.2204.13620
Torbunov, D., Huang, Y., Tseng, H.-H., Yu, H., Huang, J., Yoo, S., Lin, M., Viren, B., & Ren, Y. (2023). UVCGAN v2: An Improved Cycle-Consistent GAN for Unpaired Image-to-Image Translation. arXiv, arXiv:2303.16280. https://doi.org/10.48550/arXiv.2303.16280
Torbunov, D., Huang, Y., Yu, H., Huang, J., Yoo, S., Lin, M., Viren, B., & Ren, Y. (2022). UVCGAN: UNet Vision Transformer cycle-consistent GAN for unpaired image-to-image translation. arXiv, arXiv:2203.02557. https://doi.org/10.48550/arXiv.2203.02557
van Marrewijk, B. M., Polder, G., & Kootstra, G. (2022). Investigation of the added value of CycleGAN on the plant pathology dataset. IFAC-PapersOnLine, 55(32), 89-94. https://doi.org/10.1016/j.ifacol.2022.11.120
Vankara, J., Nandini, S. S., Muddada, M. K., Kuppili, N. S. C., & Naidu, K. S. (2023). Plant Disease Prognosis Using Spatial-Exploitation-Based Deep-Learning Models. Engineering Proceedings, 59(1), 137. https://doi.org/10.3390/engproc2023059137
Vasudevan, N., & Karthick, T. (2023). A Hybrid Approach for Plant Disease Detection Using E-GAN and CapsNet. Computer Systems Science and Engineering, 46(1), 337-356. https://doi.org/10.32604/csse.2023.034242
Venkataraman, P. (2022). Image Denoising Using Convolutional Autoencoder. arXiv, arXiv:2207.11771. https://doi.org/10.48550/arXiv.2207.11771
Venu, S. K. (2020). Evaluation of Deep Convolutional Generative Adversarial Networks for data augmentation of chest X-ray images. arXiv, arXiv:2009.01181. https://doi.org/10.48550/arXiv.2009.01181
Wan, Q., Guo, W., & Wang, Y. (2024). SGBGAN: Minority class image generation for class-imbalanced datasets. Machine Vision and Applications, 35, 22. https://doi.org/10.1007/s00138-023-01506-y
Wang, R., Schmedding, S., & Huber, M. F. (2023a). Improving the Effectiveness of Deep Generative Data. arXiv, arXiv:2311.03959. https://doi.org/10.48550/arXiv.2311.03959
Wang, T., & Lin, Y. (2024). CycleGAN with Better Cycles. arXiv, arXiv:2408.15374. https://doi.org/10.48550/arXiv.2408.15374
Wang, X., & Cao, W. (2023). GACN: Generative Adversarial Classified Network for Balancing Plant Disease Dataset and Plant Disease Recognition. Sensors, 23(15), 6844. https://doi.org/10.3390/s23156844
Wang, X., Sun, L., Chehri, A., & Song, Y. (2023b). A Review of GAN-Based Super-Resolution Reconstruction for Optical Remote Sensing Images. Remote Sensing, 15(20), 5062. https://doi.org/10.3390/rs15205062
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Loy, C. C., Qiao, Y., & Tang, X. (2018). ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. arXiv, arXiv:1809.00219. https://doi.org/10.48550/arXiv.1809.00219
Wu, Q., Chen, Y., & Meng, J. (2020). DCGAN-Based Data Augmentation for Tomato Leaf Disease Identification. IEEE Access, 8, 98716-98728. https://doi.org/10.1109/ACCESS.2020.2997001
Yang, W., Yuan, Y., Zhang, D., Zheng, L., & Nie, F. (2024). An Effective Image Classification Method for Plant Diseases with Improved Channel Attention Mechanism aECAnet Based on Deep Learning. Symmetry, 16(4), 451. https://doi.org/10.3390/sym16040451
Yuan, Y., Sun, J., & Zhang, Q. (2024). An Enhanced Deep Learning Model for Effective Crop Pest and Disease Detection. Journal of Imaging, 10(11), 279. https://doi.org/10.3390/jimaging10110279
Zhang, Z., Ma, L., Wei, C., Yang, M., Qin, S., Lv, X., & Zhang, Z. (2023). Cotton Fusarium wilt diagnosis based on generative adversarial networks in small samples. Frontiers in Plant Science, 14, 1290774. https://doi.org/10.3389/fpls.2023.1290774
Zhao, J., Mathieu, M., Goroshin, R., & LeCun, Y. (2016). Stacked What-Where Auto-encoders. arXiv, arXiv:1506.02351. https://doi.org/10.48550/arXiv.1506.02351
Zhao, Y., Chen, Z., Gao, X., Song, W., Xiong, Q., & Hu, J. (2022). Plant Disease Detection Using Generated Leaves Based on DoubleGAN. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(3), 1817-1826. https://doi.org/10.1109/TCBB.2021.3056683
Zhao, Y., Jiang, C., Wang, D., Liu, X., Song, W., & Hu, J. (2023). Identification of Plant Disease Based on Multi-Task Continual Learning. Agronomy, 13(12), 2863. https://doi.org/10.3390/agronomy13122863
Zheng, C., Wu, G., & Li, C. (2023). Toward Understanding Generative Data Augmentation. arXiv, arXiv:2305.17476. https://doi.org/10.48550/arXiv.2305.17476
Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV), 2242-2251. https://doi.org/10.1109/ICCV.2017.244
Zilvan, V., Ramdan, A., Suryawati, E., Kusumo, R. B. S., Krisnandi, D., & Pardede, H. F. (2019). Denoising Convolutional Variational Autoencoders-Based Feature Learning for Automatic Detection of Plant Diseases. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), 1-6. https://doi.org/10.1109/ICICoS48119.2019.8982494
Published
How to Cite
Issue
Section
Copyright (c) 2025 Enow Takang Achuo Albert, Ngalle Hermine Bille, Ngonkeu Mangaptche Eddy Leonard

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.