Economic and financial viability of wheat production in Cameroon

Authors

  • Adama Farida Faculty of Economic Sciences and Management, University of Yaoundé II. P.O. Box 1365 Yaoundé, and P.O. Box 18 Soa, Centre Region, Republic of Cameroon
  • Ngonkeu Mangaptche Eddy Leonard Department of Plant Biology, Faculty of Science, University of Yaoundé I. P.O. Box 812 Yaoundé, Centre Region, Republic of Cameroon
  • Jean Marie Gankou Faculty of Economic Sciences and Management, University of Yaoundé II. P.O. Box 1365 Yaoundé, and P.O. Box 18 Soa, Centre Region, Republic of Cameroon

DOI:

https://doi.org/10.25081/jsa.2025.v9.9411

Keywords:

Economic Profitability, Financial Profitability, Wheat Production, Cameroon

Abstract

This study evaluated the economic and financial profitability of wheat production in Cameroon using data from 300 individuals in Adamawa, North-West, and West regions. Key factors influencing profitability were identified through correlation heatmaps, pair-plot diagrams, and modeling algorithms (Generalized Least Squares, Random Forest, and Least Absolute Shrinkage and Selection Operator). Positive factors included production volume, packaging, and transportation costs, while negative factors included production workforce, experience, and fertilizer costs. The net margin for wheat production was positive at 76,691,000 FCFA, but financial profitability was low, with an import-to-export ratio of 0.16. The study highlights the need to enhance wheat production to reduce importation.

Downloads

Download data is not yet available.

References

Alshqaq, S. S., & Abuzaid, A. H. (2023). An Efficient Method for Variable Selection Based on Diagnostic-Lasso Regression. Symmetry, 15(12), 2155. https://doi.org/10.3390/sym15122155

Andriopoulos, V., & Kornaros, M. (2023). LASSO Regression with Multiple Imputations for the Selection of Key Variables Affecting the Fatty Acid Profile of Nannochloropsis oculata. Marine Drugs, 21(9), 483. https://doi.org/10.3390/md21090483

Becker, G. S. (1991). A Treatise on the Family. Cambridge, MA: Harvard University Press.

Bhrolcháin, M. N., & Beaujouan, É. (2012). Fertility Postponement is Largely due to rising Educational Enrolment. Population Studies, 66(3), 311-327. https://doi.org/10.1080/00324728.2012.697569

Biau, G., & Scornet, E. (2015). A Random Forest Guided Tour. arXiv, arXiv:1511.05741. https://doi.org/10.48550/arXiv.1511.05741

Bir-Jmel, A., Douiri, S. M., Bernoussi, S. E., Maafiri, A., Himeur, Y., Atalla, S., Mansoor, W., & Al-Ahmad, H. (2024). GFLASSO-LR: Logistic Regression with Generalized Fused LASSO for Gene Selection in High-Dimensional Cancer Classification. Computers, 13(4), 93. https://doi.org/10.3390/computers13040093

Boström, H. (2023). Example-Based Explanations of Random Forest Predictions. arXiv, arXiv:2311.14581. https://doi.org/10.48550/arXiv.2311.14581

Broutin, N., Devroye, L., Lugosi, G., & Oliveira, R. I. (2024). Subtractive random forests. arXiv, arXiv:2210.10544. https://doi.org/10.48550/arXiv.2210.10544

Browne, M. W. (1973). Generalized Least Squares Estimators in the Analysis of Covariance Structures. ETS Research Bulletin Series, 1973(1), i-36. https://doi.org/10.1002/j.2333-8504.1973.tb00197.x

Buhl, S., & Klüppelberg, C. (2018). Generalised least squares estimation of regularly varying space-time processes based on flexible observation schemes. arXiv, arXiv:1704.05656. https://doi.org/10.48550/arXiv.1704.05656

Cattaneo, M. D., Klusowski, J. M., & Underwood, W. G. (2024). Inference with Mondrian Random Forests. arXiv, arXiv:2310.09702. https://doi.org/10.48550/arXiv.2310.09702

Chang, Q., & Goplerud, M. (2023). Generalized Kernel Regularized Least Squares. arXiv, arXiv:2209.14355. https://doi.org/10.48550/arXiv.2209.14355

Chen, L., & Wang, D. (2024). Cost Estimation and Prediction for Residential Projects Based on Grey Relational Analysis–Lasso Regression–Backpropagation Neural Network. Information, 15(8), 502. https://doi.org/10.3390/info15080502

Cheng, S.-W., & Wong, M. T. (2024). A Fast Method for Lasso and Logistic Lasso. arXiv, arXiv:2402.02463. https://doi.org/10.48550/arXiv.2402.02463

Chintalapudi, N., Angeloni, U., Battineni, G., di Canio, M., Marotta, C., Rezza, G., Sagaro, G. G., Silenzi, A., & Amenta, F. (2022). LASSO Regression Modeling on Prediction of Medical Terms among Seafarers’ Health Documents Using Tidy Text Mining. Bioengineering, 9(3), 124. https://doi.org/10.3390/bioengineering9030124

Christakis, I., Sarri, E., Tsakiridis, O., & Stavrakas, I. (2024). Investigation of LASSO Regression Method as a Correction Measurements’ Factor for Low-Cost Air Quality Sensors. Signals, 5(1), 60-86. https://doi.org/10.3390/signals5010004

Chronopoulos, I., Chrysikou, K., & Kapetanios, G. (2023). High Dimensional Generalised Penalised Least Squares. arXiv, arXiv:2207.07055. https://doi.org/10.48550/arXiv.2207.07055

Cui, Z., & Gong, G. (2018). The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. NeuroImage, 178, 622-637. https://doi.org/10.1016/j.neuroimage.2018.06.001

Curth, A., Jeffares, A., & van der Schaar, M. (2024). Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers. arXiv, arXiv:2402.01502. https://doi.org/10.48550/arXiv.2402.01502

Darbelet, M., & Laugine, J. M. (1990). Economie d’entreprise. Foucher, 374-375.

Emmert-Streib, F., & Dehmer, M. (2019). High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection. Machine Learning and Knowledge Extraction, 1(1), 359-383. https://doi.org/10.3390/make1010021

Esping-Andersen, G. (2009). The Incomplete Revolution: Adapting to Women’s New Roles. Cambridge, UK: Polity Press.

FAO. (2011). L’État de l’insécurité alimentaire dans le monde 2011. Quelles sont les conséquences de l’instabilité des cours internationaux pour l’économie et la sécurité alimentaire des pays ? Rome.

FAO. (2016). Produire plus avec moins en pratique le maïs, le riz et le blé. ORGANISATION DES NATIONS UNIES POUR L’ALIMENTATION ET L’AGRICULTURE. Rome.

Fontanarosa, J. B., & Dai, Y. (2011). Using LASSO regression to detect predictive aggregate effects in genetic studies. BMC Proceedings, 5, S69. https://doi.org/10.1186/1753-6561-5-S9-S69

Freijeiro-González, L., Febrero-Bande, M., & González-Manteiga, W. (2020). A critical review of LASSO and its derivatives for variable selection under dependence among covariates. arXiv, arXiv:2012.11470. https://doi.org/10.48550/arXiv.2012.11470

Gafarov, B. (2023). Generalized Automatic Least Squares: Efficiency Gains from Misspecified Heteroscedasticity Models. arXiv, arXiv:2304.07331. https://doi.org/10.48550/arXiv.2304.07331

Gaïffas, S., Merad, I., & Yu, Y. (2023). WildWood: A new Random Forest algorithm. arXiv, arXiv:2109.08010. https://doi.org/10.48550/arXiv.2109.08010

GIZ/PARSE-AD. (2017). Etude sur les métiers rentables : Projet d’Appui à la Résilience Socio-économique des jeunes vulnérables (Extrême-Nord, Nord et Adamaoua). Ministère Fédéral de la Coopération économique et du Développement (BMZ), 2-100

Hiabu, M., Mammen, E., & Meyer, J. T. (2023). Random Planted Forest: A directly interpretable tree ensemble. arXiv, arXiv:2012.14563. https://doi.org/10.48550/arXiv.2012.14563

Hong, C., Xiong, Y., Xia, J., Huang, W., Xia, A., Xu, S., Chen, Y., Xu, Z., Chen, H., & Zhang, Z. (2024). LASSO-Based Identification of Risk Factors and Development of a Prediction Model for Sepsis Patients. Therapeutics and Clinical Risk Management, 20, 47-58. https://doi.org/10.2147/TCRM.S434397

Hsu, C.-L., Wu, P.-C., Wu, F.-Z., & Yu, H.-C. (2024). LASSO-derived model for the prediction of lean-non-alcoholic fatty liver disease in examinees attending a routine health check-up. Annals of Medicine, 56(1), 2317348. https://doi.org/10.1080/07853890.2024.2317348

Hu, X. J., Lagakos, S. W., & Lockhart, R. A. (2009). Generalized least squares estimation of the mean function of a counting process based on panel counts. Statistica Sinica, 19, 561-580.

Izza, Y., & Marques-Silva, J. (2021). On Explaining Random Forests with SAT. arXiv, arXiv:2105.10278. https://doi.org/10.48550/arXiv.2105.10278

Jones, A. M., Bosler, P. A., Kuberry, P. A., & Wright, G. B. (2023). Generalized moving least squares vs. Radial basis function finite difference methods for approximating surface derivatives. arXiv, arXiv:2309.04035. https://doi.org/10.48550/arXiv.2309.04035

Khanna, A., Lu, F., Raff, E., & Testa, B. (2023). Sparse Private LASSO Logistic Regression. arXiv, arXiv:2304.12429. https://doi.org/10.48550/arXiv.2304.12429

Kim, Y., Kim, S. Y., & Kim, H. (2024). Heterogeneous Random Forest. arXiv, arXiv:2410.19022. https://doi.org/10.48550/arXiv.2410.19022

Lai, B., & Bernstein, D. S. (2024). Generalized Forgetting Recursive Least Squares: Stability and Robustness Guarantees. arXiv, arXiv:2308.04259. https://doi.org/10.48550/arXiv.2308.04259

Batsch, L. (2003). Rentabilité Économique, Linéarité de l’investissement et Retour Sur Dépenses Cumulées : Quelques Problèmes de Mesure. Cereg, Université Paris-Dauphine Mai 2003.

Lee, J. H., Shi, Z., & Gao, Z. (2021). On LASSO for Predictive Regression. arXiv, arXiv:1810.03140. https://doi.org/10.48550/arXiv.1810.03140

Lee, T.-F., Chao, P.-J., Ting, H.-M., Chang, L., Huang, Y.-J., Wu, J.-M., Wang, H.-Y., Horng, M.-F., Chang, C.-M., Lan, J.-H., Huang, Y.-Y., Fang, F.-M., & Leung, S. W. (2014). Using Multivariate Regression Model with Least Absolute Shrinkage and Selection Operator (LASSO) to Predict the Incidence of Xerostomia after Intensity-Modulated Radiotherapy for Head and Neck Cancer. Plos One, 9(2), e89700. https://doi.org/10.1371/journal.pone.0089700

Lenoir, B. (2013). A general approach of least squares estimation and optimal filtering. arXiv, arXiv:1305.6324. https://doi.org/10.48550/arXiv.1305.6324

Li, J., & Sonthalia, R. (2024). Generalization for Least Squares Regression With Simple Spiked Covariances. arXiv, arXiv:2410.13991. https://doi.org/10.48550/arXiv.2410.13991

Li, J., Pollinger, F., & Paeth, H. (2020). Comparing the Lasso Predictor-Selection and Regression Method with Classical Approaches of Precipitation Bias Adjustment in Decadal Climate Predictions. Monthly Weather Review, 148(10), 4339-4351. https://doi.org/10.1175/MWR-D-19-0302.1

Li, R., Yan, Q., & Jiang, S. W. (2024). Generalized Moving Least-Squares for Solving Vector-valued PDEs on Unknown Manifolds. arXiv, arXiv:2406.12210. https://doi.org/10.48550/arXiv.2406.12210

Li, Y., Lu, F., & Yin, Y. (2022). Applying logistic LASSO regression for the diagnosis of atypical Crohn’s disease. Scientific Reports, 12, 11340. https://doi.org/10.1038/s41598-022-15609-5

Li, Y., Yang, R., Wang, X., Zhu, J., & Song, N. (2023). Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration. Sustainability, 15(12), 9354. https://doi.org/10.3390/su15129354

Liu, L., Gao, J., Beasley, G., & Jung, S.-H. (2023a). LASSO and Elastic Net Tend to Over-Select Features. Mathematics, 11(17), 3738. https://doi.org/10.3390/math11173738

Liu, M., Li, Q., Zhang, J., & Chen, Y. (2023b). Development and Validation of a Predictive Model Based on LASSO Regression: Predicting the Risk of Early Recurrence of Atrial Fibrillation after Radiofrequency Catheter Ablation. Diagnostics, 13(22), 3403. https://doi.org/10.3390/diagnostics13223403

Lloyd-Jones, L. R., Nguyen, H. D., & McLachlan, G. J. (2016). A globally convergent algorithm for lasso-penalized mixture of linear regression models. arXiv, arXiv:1603.08326. https://doi.org/10.48550/arXiv.1603.08326

Louppe, G. (2015). Understanding Random Forests: From Theory to Practice. arXiv, arXiv:1407.7502. https://doi.org/10.48550/arXiv.1407.7502

Lupton-Smith, C., Stuart, E. A., McGinty, E. E., Dalcin, A. T., Jerome, G. J., Wang, N.-Y., & Daumit, G. L. (2022). Determining Predictors of Weight Loss in a Behavioral Intervention: A Case Study in the Use of Lasso Regression. Frontiers in Psychiatry, 12, 707707. https://doi.org/10.3389/fpsyt.2021.707707

Maggin, D. M., Swaminathan, H., Rogers, H. J., O’Keeffe, B. V., Sugai, G., & Horner, R. H. (2011). A generalized least squares regression approach for computing effect sizes in single-case research: Application examples. Journal of School Psychology, 49(3), 301-321. https://doi.org/10.1016/j.jsp.2011.03.004

Makelele, L. (2014). Analyse de la Performance Financière d’une Entreprise Hôtelière : cas de l’Hôtel Mangwe/Uvira. TFC, UCB.

Mcdonald, P. (2000). Gender Equity, Social Institutions and the Future of Fertility. Journal of the Australian Population Association, 17, 1-16. https://doi.org/10.1007/BF03029445

McEligot, A. J., Poynor, V., Sharma, R., & Panangadan, A. (2020). Logistic LASSO Regression for Dietary Intakes and Breast Cancer. Nutrients, 12(9), 2652. https://doi.org/10.3390/nu12092652

Mei, Z., & Shi, Z. (2024). On LASSO for High Dimensional Predictive Regression. arXiv, arXiv:2212.07052. https://doi.org/10.48550/arXiv.2212.07052

Meng, L., Zheng, T., Wang, Y., Li, Z., Xiao, Q., He, J., & Tan, J. (2021). Development of a prediction model based on LASSO regression to evaluate the risk of non-sentinel lymph node metastasis in Chinese breast cancer patients with 1–2 positive sentinel lymph nodes. Scientific Reports, 11, 19972. https://doi.org/10.1038/s41598-021-99522-3

MINADER/AFD/IRAM. (2015). Etude de Préfaisabilité d’un Programme de Gestion des Risques Agricoles, Rapport Final, Décembre 2015.

Mokrišová, M., & Horváthová, J. (2023). Domain Knowledge Features versus LASSO Features in Predicting Risk of Corporate Bankruptcy—DEA Approach. Risks, 11(11), Article 199. https://doi.org/10.3390/risks11110199

Silue, N. Z., Dao, D., Valerie Kouame, H. K., & Kone, M. (2019). Analyse de la Rentabilité Economique des Systemes de Production a Base d’Igname : cas des Sites de Leo et Midebdo au Burkina Faso. Institut de Gestion Agropastorale/Université Péléforo Gon Coulibaly Côte d’Ivoire Agronomie Africaine, 31(1), 1-14.

Ng, T. L., & Newton, M. A. (2022). Random weighting in LASSO regression. arXiv, arXiv:2002.02629. https://doi.org/10.48550/arXiv.2002.02629

Nobari, K. S., & Gibberd, A. (2024). ℓ1-Regularized Generalized Least Squares. arXiv, arXiv:2405.10719. https://doi.org/10.48550/arXiv.2405.10719

Paraïso, A., Sossou, A., Yègbémey, R., & Biaou, G. (2010). Analyse de la Rentabilité de la Production du Fonio (Digitaria Exilis) dans la Commune de Boukombe au Bénin. IVème Journée Scientifique de l’Université de Lomé, Togo, 25-28 octobre 2010.

Peri-Rotem. (2020). Écarts de fécondité en fonction du niveau d’instruction: le rôle de la religion en Grande-Bretagne Et En France. Population, 75, 9-38.

Pirou, J. P. (2005). Mesure de la Rentabilité des Entreprise. Bulletin de la Banque de France, N° 134 de Février 2005.

Pourhamidi, R., & Moslemi, A. (2023). Using the Precision Lasso for gene selection in diffuse large B cell lymphoma cancer. Journal of the Egyptian National Cancer Institute, 35(1), 19. https://doi.org/10.1186/s43046-023-00172-5

Probst, P., Wright, M., & Boulesteix, A.-L. (2019). Hyperparameters and Tuning Strategies for Random Forest. arXiv, arXiv:1804.03515. https://doi.org/10.48550/arXiv.1804.03515

Rajaratnam, B., Roberts, S., Sparks, D., & Yu, H. (2019). Influence Diagnostics for High-Dimensional Lasso Regression. Journal of Computational and Graphical Statistics, 28(4), 877-890. https://doi.org/10.1080/10618600.2019.1598869

Reid, S., Tibshirani, R., & Friedman, J. (2014). A Study of Error Variance Estimation in Lasso Regression. arXiv, arXiv:1311.5274. https://doi.org/10.48550/arXiv.1311.5274

Rhodes, J. S., Cutler, A., & Moon, K. R. (2023). Geometry- and Accuracy-Preserving Random Forest Proximities. arXiv, arXiv:2201.12682. https://doi.org/10.48550/arXiv.2201.12682

Roch, S., & Rohe, K. (2017). Generalized least squares can overcome the critical threshold in respondent-driven sampling. arXiv, arXiv:1708.04999. https://doi.org/10.48550/arXiv.1708.04999

Shah, I., Naz, H., Ali, S., Almohaimeed, A., & Lone, S. A. (2023). A New Quantile-Based Approach for LASSO Estimation. Mathematics, 11(6), 1452. https://doi.org/10.3390/math11061452

Sion, M. (2020). Ratio de rentabilité économique : quelle est son importance ?. Par Michel Sion le 31 mars 2020, Analyse financière.

Surve, T., & Pradhan, R. (2024). Example-based Explanations for Random Forests using Machine Unlearning. arXiv, arXiv:2402.05007. https://doi.org/10.48550/arXiv.2402.05007

Tiama, D., Kaboré, B., Nanéma, K. R., Dabiré, M., & Sawadogo, N. (2018). Systèmes de culture et caractérisation paysanne des ignames du Passoré au Burkina Faso. International Journal of Innovation and Scientific Research, 38(2), 203-211.

Utkin, L. V., & Konstantinov, A. V. (2022). Attention and Self-Attention in Random Forests. arXiv, arXiv:2207.04293. https://doi.org/10.48550/arXiv.2207.04293

van der Wurp, H., & Groll, A. (2023). Introducing LASSO-type penalisation to generalised joint regression modelling for count data. AStA Advances in Statistical Analysis, 107, 127-151. https://doi.org/10.1007/s10182-021-00425-5

van Egmond, M. B., Spini, G., van der Galien, O., IJpma, A., Veugen, T., Kraaij, W., Sangers, A., Rooijakkers, T., Langenkamp, P., Kamphorst, B., van de L’Isle, N., & Kooij-Janic, M. (2021). Privacy-preserving dataset combination and Lasso regression for healthcare predictions. BMC Medical Informatics and Decision Making, 21, 266. https://doi.org/10.1186/s12911-021-01582-y

Waltz, N. (2024). Grafting: Making Random Forests Consistent. arXiv, arXiv:2403.06015. https://doi.org/10.48550/arXiv.2403.06015

Wang, J., Xu, Y., Liu, L., Wu, W., Shen, C., Huang, H., Zhen, Z., Meng, J., Li, C., Qu, Z., he, Q., & Tian, Y. (2023). Comparison of LASSO and random forest models for predicting the risk of premature coronary artery disease. BMC Medical Informatics and Decision Making, 23, 297. https://doi.org/10.1186/s12911-023-02407-w

Wong, A., Kramer, S. C., Piccininni, M., Rohmann, J. L., Kurth, T., Escolano, S., Grittner, U., & Domenech de Cellès, M. (2023). Using LASSO Regression to Estimate the Population-Level Impact of Pneumococcal Conjugate Vaccines. American Journal of Epidemiology, 192(7), 1166-1180. https://doi.org/10.1093/aje/kwad061

Wyss, R., van der Laan, M., Gruber, S., Shi, X., Lee, H., Dutcher, S. K., Nelson, J. C., Toh, S., Russo, M., Wang, S. V., Desai, R. J., & Lin, K. J. (2024). Targeted learning with an undersmoothed LASSO propensity score model for large-scale covariate adjustment in health-care database studies. American Journal of Epidemiology, 193(11), 1632-1640. https://doi.org/10.1093/aje/kwae023

Yang, S., Yan, Y., Zhu, X., & Sun, Q. (2023). Online Linearized LASSO. arXiv, arXiv:2211.06039. https://doi.org/10.48550/arXiv.2211.06039

Zhang, Q., & Drissi-Habti, M. (2024). Electric Cable Insulator Damage Monitoring by Lasso Regression. Machines, 12(1), 50. https://doi.org/10.3390/machines12010050

Zhang, Y., Ji, W., & Bradic, J. (2024). Adaptive Split Balancing for Optimal Random Forest. arXiv, arXiv:2402.11228. https://doi.org/10.48550/arXiv.2402.11228

Zhao, Y., & Huo, X. (2023). A Survey of Numerical Algorithms that can Solve the Lasso Problems. arXiv, arXiv:2303.03576. https://doi.org/10.48550/arXiv.2303.03576

Published

28-01-2025

How to Cite

Farida, A., Leonard, N. M. E., & Gankou, J. M. (2025). Economic and financial viability of wheat production in Cameroon. Journal of Scientific Agriculture, 9, 1–15. https://doi.org/10.25081/jsa.2025.v9.9411

Issue

Section

Articles