Antifungal activity of turmeric rhizome extract against Ganoderma boninense

Authors

  • Lidya Karlina Crop Sciences Graduate Program, Faculty of Agriculture, Universitas Sriwijaya, Jl. Padang Selasa 524, Palembang 30139, Indonesia
  • Suwandi Suwandi Crop Sciences Graduate Program, Faculty of Agriculture, Universitas Sriwijaya, Jl. Padang Selasa 524, Palembang 30139, Indonesia, Department of Plant Protection, Faculty of Agriculture Universitas Sriwijaya, Jl. Palembang-Prabumulih Km.32, Indralaya 30862, Indonesia https://orcid.org/0000-0003-3096-5797
  • A. Muslim Crop Sciences Graduate Program, Faculty of Agriculture, Universitas Sriwijaya, Jl. Padang Selasa 524, Palembang 30139, Indonesia, Department of Plant Protection, Faculty of Agriculture Universitas Sriwijaya, Jl. Palembang-Prabumulih Km.32, Indralaya 30862, Indonesia
  • Nurhayati Damiri Crop Sciences Graduate Program, Faculty of Agriculture, Universitas Sriwijaya, Jl. Padang Selasa 524, Palembang 30139, Indonesia, Department of Plant Protection, Faculty of Agriculture Universitas Sriwijaya, Jl. Palembang-Prabumulih Km.32, Indralaya 30862, Indonesia
  • Abdul Madjid Rohim Crop Sciences Graduate Program, Faculty of Agriculture, Universitas Sriwijaya, Jl. Padang Selasa 524, Palembang 30139, Indonesia
  • Zaidan P. Negara Crop Sciences Graduate Program, Faculty of Agriculture, Universitas Sriwijaya, Jl. Padang Selasa 524, Palembang 30139, Indonesia, Department of Agronomy, Faculty of Agriculture Universitas Sriwijaya, Jl. Palembang-Prabumulih Km.32, Indralaya 30862, Indonesia

DOI:

https://doi.org/10.25081/jsa.2024.v8.9292

Keywords:

Ganoderma boninense, Turmeric rhizome extract, Antifungal properties

Abstract

Basal stem rot (BSR) caused by Ganoderma boninense threatens the oil palm industry, particularly in Southeast Asia. This study evaluated methanol extracts of turmeric rhizome (TRE) from four ecotypes (Bangka, Bandung, Palembang, and Surabaya) for antifungal activity against G. boninense. TRE showed strong inhibition, with a minimum inhibitory concentration (MIC) of 0.31% and IC50 values between 0.93% and 1.92%, exhibiting dose-dependent effects. Treated fungal hyphae displayed morphological abnormalities with enhanced chitin and protein deposition. Elevated electrical conductivity in fungal culture media indicated membrane damage and leakage of intracellular contents. These findings highlight the potential of TRE as a sustainable alternative to chemical fungicides for BSR management.

Downloads

Download data is not yet available.

References

Akter, J., Hossain, M. A., Sano, A., Takara, K., Islam, M. Z., & Hou, D.-X. (2018). Antifungal activity of various species and strains of turmeric (Curcuma spp.) against (Fusarium solani) sensu lato. Pharmaceutical Chemistry Journal, 52, 320-325. https://doi.org/10.1007/s11094-018-1815-4

Akter, J., Islam, M. Z., Takara, K., Hossain, M. A., & Sano, A. (2019). Isolation and structural elucidation of antifungal compounds from Ryudai gold (Curcuma longa) against Fusarium solani sensu lato isolated from American manatee. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 219, 87-94. https://doi.org/10.1016/j.cbpc.2019.02.011

Baharon, M. N., Zulkifli, N. S. A., Baharom, N. A., & Yunus, S. M. (2019). Antifungal activity of selected plant extracts against Curvularia sp. infecting local purple sweet potato (Ipomoea batatas). Malaysian Journal of Microbiology, 15(4), 342-345. https://doi.org/10.21161/mjm.1915411

Huang, L., Zhang, J., Song, T., Yuan, L., Zhou, J., Yin, H., He, T., Gao, W., Sun, Y., Hu, X., & Huang, H. (2016). Antifungal curcumin promotes chitin accumulation associated with decreased virulence of Sporothrix schenckii. International Immunopharmacology, 34, 263-270. https://doi.org/10.1016/j.intimp.2016.03.010

Kamu, A., Phin, C. K., Seman, I. A., Gabda, D., & Mun, H. C. (2020). Estimating the yield loss of oil palm due to Ganoderma basal stem rot disease by using Bayesian model averaging. Journal of Oil Palm Research, 33(1), 46-55. https://doi.org/10.21894/jopr.2020.0061

Kumar, A., Dhamgaye, S., Maurya, I. K., Singh, A., Sharma, M., & Prasad, R. (2014). Curcumin targets cell wall integrity via calcineurin-mediated signaling in Candida albicans. Antimicrobial Agents and Chemotherapy, 58(1), 167-175. https://doi.org/10.1128/AAC.01385-13

Munandar, R. P., Suwandi, S., & Suparman, S. (2021). Pengaruh tumpangsari dengan tanaman rimpang terhadap infeksi awal Ganoderma boninense pada bibit kelapa sawit (Elaeis guineensis). Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 18(1), 34. https://doi.org/10.31851/sainmatika.v17i3.5738

Neelofar, K., Shreaz, S., Rimple, B., Muralidhar, S., Nikhat, M., & Khan, L. A. (2011). Curcumin as a promising anticandidal of clinical interest. Canadian Journal of Microbiology, 57(3), 204-210. https://doi.org/10.1139/W10-117

Rahmadhani, T. P., Suwandi, S., & Pujiastuti, Y. (2018). Growth response of Ganoderma sp. mycelium treated with root exudates of herbaceous plants. BIOVALENTIA: Biological Research Journal, 4(1), 28-31. https://doi.org/10.24233/BIOV.4.1.2018.88

Rahmadhani, T. P., Suwandi, S., & Suparman, S. (2020). Growth responses of oil palm seedling inoculated with Ganoderma boninense under competition with edible herbaceous plants. Journal of Scientific Agriculture, 4, 45-49. https://doi.org/10.25081/jsa.2020.v4.6231

Suwandi, S., Munandar, R. P., Suparman, S., Irsan, C., & Muslim, A. (2023). Mixed planting with rhizomatous plants interferes with Ganoderma disease in oil palm. Journal of Oil Palm Research, 35(2), 354-364. https://doi.org/10.21894/jopr.2022.0043

Suwandi, S., Rahmadhani, T. P., Suparman, S., Irsan, C., & Muslim, A. (2022). Allelopathic potential of root exudates from perennial herbaceous plants against Ganoderma boninense. IOP Conference Series: Earth and Environmental Science, 976(1), 012053. https://doi.org/10.1088/1755-1315/976/1/012053

Tang, X., Shao, Y.-L., Tang, Y.-J., & Zhou, W.-W. (2018). Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules, 23(9), 2108. https://doi.org/10.3390/molecules23092108

Upasani, M. L., Gurjar, G. S., Kadoo, N. Y., & Gupta, V. S. (2016). Dynamics of colonization and expression of pathogenicity related genes in Fusarium oxysporum f.sp. ciceri during chickpea vascular wilt disease progression. Plos One, 11(5), e0156490. https://doi.org/10.1371/journal.pone.0156490

Yuan, T., Hua, Y., Zhang, D., Yang, C., Lai, Y., Li, M., Ding, S., Li, S., & Chen, Y. (2024). Efficacy and antifungal mechanism of rosemary essential oil against Colletotrichum gloeosporioides. Forests, 15(2), 377. https://doi.org/10.3390/f15020377

Zakaria, L. (2023). Basal stem rot of oil palm: the pathogen, disease incidence, and control methods. Plant Disease, 107(3), 603-615. https://doi.org/10.1094/PDIS-02-22-0358-FE

Published

02-12-2024

How to Cite

Karlina, L., Suwandi, S., Muslim, A., Damiri, N., Rohim, A. M., & Negara, Z. P. (2024). Antifungal activity of turmeric rhizome extract against Ganoderma boninense. Journal of Scientific Agriculture, 8, 88–91. https://doi.org/10.25081/jsa.2024.v8.9292

Issue

Section

Articles