Antiviral activity of red fluorescent proteins in silkworm, Bombyx mori L.

Authors

  • Tajamul Islam College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Kashmir-190025, India
  • Jasmeena Qadir Division of Sericulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu-180009, India

DOI:

https://doi.org/10.25081/jsa.2024.v8.9088

Keywords:

Chlorophyllide-a, Digestive juice, Red fluorescent proteins, BmNPV, Bombyx mori

Abstract

Silkworm is an important economic insect in the textile industry for the production of silk. During its larval period, it suffers from various types of diseases viz., fungal, viral, bacterial and protozoan which hamper its growth and development and negatively impact the raw silk production. To fight these pathogens, different types of proteins have been found in the silkworm larva. Among these proteins, red fluorescent proteins (RFPs) possess antiviral activity, found in the digestive juice of the midgut of silkworm larvae. These RFPs are found to be more effective against Bombyx mori L. nucleopolyhedrosis virus (BmNPV), which is the causal agent of the most dreadful disease known as Grasserie. The RFP is synthesised in the presence of light after silkworms are fed on fresh mulberry leaves having absorbance peaks (280 and 605 nm) wave length.

Downloads

Download data is not yet available.

References

Abraham, E. G., Nagaraju, J., Salunke, D., Gupta, H. M., & Datta, R. K. (1995). Purification and partial characterization of an induced antibacterial protein in the silkworm, Bombyx mori. Journal of Invertebrate Pathology, 65(1), 17-24. https://doi.org/10.1006/jipa.1995.1003

Acharya, A., Sriram, S., Sehrawat, S., Rahman, M., Sehgal, D., & Gopinathan, K. P. (2002). Bombyx mori nucleopolyhedrovirus: molecular biology and biotechnological applications for large-scale synthesis of recombinant proteins. Current Science, 83(4), 455-465.

Aizawa, K. (1962). Antiviral substance in the gut-juice of the silkworm. Journal of Insect Pathology, 4, 72-76.

Aruga, H. (1994). Principles of Sericulture. India: Oxford and IBH publications Pvt. Ltd.

Attathom, T., & Sinchaisri, N. (1987). Nuclear polyhedrosis virus isolated from Bombyx mori in Thailand. Sericologia, 27(2), 287-295.

Baig, M., Shashidharan, T. O., Sharma, S. D., Sen, S. K., & Jolly, M. S. (1989). Efficiency of certain bed disinfectants against nuclear polyhedrosis of silkworm Bombyx mori L. Indian Journal of Sericulture, 28(2), 214-218.

Basavarajappa, S. (1996). Grasserie disease of the silkworm Bombyx mori L. in northern districts of Karnataka. Doctoral Dissertation, Kamatak University.

Bergold, G. H. (1963). The Nature of Nuclear-Polyhedrosis Viruses. In E. Steinhaus (Eds.), Insect Pathology: an advanced treatise (pp. 443-456) New York, US: Academic Press.

Boman, H. G., & Hultmark, D. (1987). Cell-free immunity in insects. Annual Review of Microbiology, 41, 103-126. https://doi.org/10.1146/annurev.mi.41.100187.000535

Chishti, M. Z., & Schof, K. A. (1991). Studies on the polyhedrosis disease of the silkworm, Bombyx mori in Jammu and Kashmir state. Indian Journal of Sericulture, 129(1), 155-157.

Funakoshi, M., & Aizawa, K. (1989). Antiviral substance in the silkworm gut juice against a nuclear polyhedrosis virus of the silkworm, Bombyx mori. Journal of Invertebrate Pathology, 53(1), 135-136. https://doi.org/10.1016/0022-2011(89)90088-8

Goldsmith, M. R., Shimada, T., & Abe, H. (2005). The genetics and genomics of the silkworm, Bombyx mori. Annual Reviews of Entomology, 50, 71-100. https://doi.org/10.1146/annurev.ento.50.071803.130456

Hayashiya, K. (1978). Red fluorescent protein in the digestive juice of the silkworm larvae fed on host-plant mulberry leaves. Entomologia experimentalis et applicata, 24(3), 228-236.

Hayashiya, K., Nishida, J., & Matsubara, F. (1968). Virus inactivation in the digestive fluid of silkworms. Japanese Journal of Applied Entomology and Zoology, 12(4), 189-193. https://doi.org/10.1303/JJAEZ.12.189

Hayashiya, K., Nishida, J., & Matsubara, F. (1969). The production of antiviral substances, a red fluorescent protein, in the digestive juice of the silkworm larvae (Lepidoptera: Bombycidae). Applied Entomology and Zoology, 4(3), 154-155. https://doi.org/10.1303/aez.4.154

Hayashiya, K., Nishida, J., & Uchida, Y. (1976). Mechanism of formation of red fluorescence protein in the digestive juice of silkworm larvae. Japanese Journal of Applied Entomology and Zoology, 20(1), 37-43. https://doi.org/10.1303/JJAEZ.20.37

Hiraki, A., Hirayama, E., & Kim, J. (2000). Antiviral substance from silkworm faeces: Characterization of its antiviral activity. Microbiology and Immunology, 44(8), 669-676. https://doi.org/10.1111/j.1348-0421.2000.tb02548.x

Hiraki, A., Yukawa, M., Kim, J., & Ueda, S. (1997). Antiviral substance from silkworm faeces: Purification and its chemical characterization. Biological and Pharmaceutical Bulletin, 20(5), 547-555. https://doi.org/10.1248/bpb.20.547

Horie, V., & Watnabe, H. (1980). Recent advances in sericulture. Annual Review of Entomology, 25, 49-71. https://doi.org/10.1146/annurev.en.25.010180.000405

Hou, R. F., & Chiu, C. S. (1986). Antiviral proteins in midgut of the silkworm, Bombyx mori fed on different food sources. Entomologia experimentalis et applicata, 42(1), 3-8. https://doi.org/10.1111/j.1570-7458.1986.tb02180.x

Hu, Z., Zhu, F., & Chen, K. (2023). The Mechanisms of Silkworm Resistance to the Baculovirus and Antiviral Breeding. Annual Review of Entomology, 68, 381-399. https://doi.org/10.1146/annurev-ento-120220-112317

Islam, T. (2023). Biochemical Evaluation of Different Mulberry varieties-a review. International Journal of Theoretical & Applied Sciences, 15(1), 12-17.

Islam, T., Khan, I. L., Gora, M. M., Khan, M. Y., Bhat, T. A., & Jan, N. (2020b). Influence of egg albumen supplemented mulberry leaf on some reeling parameters of Silkworm, Bombyx mori L. The Pharma Innovation Journal, 9(S11), 19-22.

Islam, T., Bhat, S. A., Malik, F. A., Khan, F. A., Mir, S. A., Nazir, N., & Wani, S. A. (2022b), Evaluation of some mulberry genotypes for nutritional consumption parameters of silkworm, Bombyx mori L. under temperate conditions of Kashmir, India. Plant Archives, 22(2), 136-139. https://doi.org/10.51470/PLANTARCHIVES.2022.v22.no2.024

Islam, T., Bhat, S. A., Malik, F. A., Khan, F. A., Mir, S. A., Nazir, N., & Wani, S. A. (2022a). Rearing of silkworm, Bombyx mori L. on different mulberry genotypes and its impact on post cocoon parameters. Plant Archives, 22(2), 380-382. https://doi.org/10.51470/PLANTARCHIVES.2022.v22.no2.065

Islam, T., Bhat, S. A., Malik, F. A., Wani, S. A., Khan, F. A., Mir, S. A., & Nazir, N. (2023a). Feeding of different Mulberry Varieties and its Impact on Silk Gland of Silkworm, Bombyx mori L. Biological Forum - An International Journal, 15(1), 488-492.

Islam, T., Khan, I. L., Ganie, N. A., Sahaf, K. A., Jan, N., & Gora, M. M. (2020a). Impact of egg albumen (egg white) fortified mulberry leaf on rearing and some cocoon parameters of silkworm, Bombyx mori L. (CSR6 × CSR26) × (CSR2 × CSR27) double hybrid. International Journal of Chemical Studies, 8(4), 267-271. https://doi.org/10.22271/chemi.2020.v8.i4e.10034

Islam, T., Qadir, J., & Bashir, I. (2023b). Impact of Lentil Seed (Lens culinaris) fortified Mulberry Leaves on Silk Productivity of Bombyx mori L. Biological Forum- An International Journal, 15(3), 851-854.

Jiang, L., Wang, G., Cheng, T., Yang, Q., Jin, S., Lu, G., Wu, F., Xiao, Y., Xu, H., & Xia, Q. (2012). Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms. Archives of Virology, 157, 1323-1328. https://doi.org/10.1007/s00705-012-1309-8

Kimbrell, D. A. (1991). Insect antibacterial proteins: not just for insects and against bacteria. BioEssays, 13(12), 657-663. https://doi.org/10.1002/bies.950131207

Majid, N., & Islam, T. (2022). Analysis of quantitative parameters of mulberry plant in various zones of Kashmir valley, India. Plant Archives, 22(2), 376-379. https://doi.org/10.51470/PLANTARCHIVES.2022.v22.no2.064

Marmaras, V. J., & Lampropoulou, M. (2009). Regulators and signalling in insect haemocyte immunity. Cellular Signalling, 21(2), 186-195. https://doi.org/10.1016/j.cellsig.2008.08.014

Matsubara, F., & Hayashiya, K. (1969). The susceptibility to the infection with nuclear polyhedrosis virus in the silkworm reared on artificial diet. The Journal of Sericultural Science of Japan, 38(1), 43-48. https://doi.org/10.11416/kontyushigen1930.38.43

Matti, K. M., Savanurmath, C. J., & Hinchigeri, S. B. (2010). A Promising Broad Spectrum Antimicrobial Red Fluorescent Protein Present in Silkworm Excreta. Biological and Pharmaceutical Bulletin, 33(7), 1143-1147. https://doi.org/10.1248/bpb.33.1143

Mauchamp, B., Royer, C., Garel, A., Jalabert, A., Rocha, M.D., Grenier, A.M., Labas, V., Vinh, J., Mita, K., Kadono, K., & Chavancy, G. (2006). Polycalin (chlorophyllide a binding protein): a novel, very large fluorescent lipocalin from the midgut of the domestic silkworm Bombyx mori L. Insect Biochemistry and Molecular Biology, 36, 623-633. https://doi.org/10.1016/j.ibmb.2006.05.006

Nakazawa, H., Tsuneishi, E., Ponnuvel, K.M., Furukawa, S., Asaoka, A., Tanaka, H., Ishibashi, J., & Yamakawa, M. (2004). Antiviral activity of a serine protease from the digestive juice of B. mori larvae against NPV. Virology, 321(1), 54-162. https://doi.org/10.1016/j.virol.2003.12.011

Narasimhanna, M. N. (1988). Manual on silkworm egg production. Bangalore, India: CSB.

Nishida, J., Okada, J., Hayashiya, Y., Waku, Y., & Sumimoto, K. (1973). Comparative experiments with the silkworm larvae reared on mulberry leaves and artificial diets II. The biosynthesis of anti-viral red fluorescent protein in vitro and the distribution of the protein in the midgut tissue of silkworm larvae. Bulletin of the Faculty of Science, 7, 59-67.

Pandian, G. N., Ishikawa, T., Togashi, M., Shitomi, Y., Haginoya, K., Yamamoto, S., Nishiumi, T., & Hori, H. (2008). Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity. Applied and Environmental Microbiology, 74(5), 1324-1331. https://doi.org/10.1128/aem.01901-07

Park, Y.-J., Kim, W.-S., Ko, S.-H., Lim, D.-S., Lee, H.-J., Lee, W.-Y., & Lee, D. W. (2003). Separation and characterization of chlorophyll degradation products in silkworm using HPLC-UV-APCI-MS. Journal of Liquid Chromatography & Related Technology, 26(19), 3183-3197. https://doi.org/10.1081/JLC-120025517

Ponnuvel, K. M., Nakazawa, H., Furukawa, S., Asaoka, A., Ishibashi, J., Tanaka, H., Yamakawa, M. A. (2003). Lipase isolated from the Silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. Journal of Virology, 77(19), 10725-10729. https://doi.org/10.1128/JVI.77.19.10725-10729.2003

Qadir, J., Sudan, N., Gupta, D., Dar, R. S., Singh, H., & Murali, S. (2022). Impact of high temperature during chawki stage on the biological and cocoon parameters of silkworm Bombyx mori L. International Journal of Agricultural Sciences, 14(12), 12111-12113.

Ratcliffe, N. A., Rowley, A. F., Fitzgerald, S. W., & Rhodes, C. P. (1985). Invertebrate immunity: Basic concepts and recent advances. International Review of Cytology, 97, 183-350. https://doi.org/10.1016/S0074-7696 (08)62351-7

Samson, M. V. (1985). Silkworm rearing and diseases. Indian silk, 33, 31-33.

Samson, M. V., Baig, M., Balavenkatasubbaiah, M., Sharma, S. D., Sashidharan, T. O., & Jolly, M. S. (1988). Infectivity titre of free virus inoculum of cytoplasmic polyhedrosis to silkworm, Bombyx mori L. Indian Journal of Sericulture, 27(2), 113-116.

Savanurmath, C. J., Basavarajappa, S., Hinchigeri, S. B., Ingalhalli, S. S., Singh, K. K., & Sanakal, R. D. (1994). Relative incidence of the silkworm viral diseases in agroclimatic zones of Northern Karnataka. Indian Bulletin of Sericultural Research, 5, 51-55.

Selot, R., Kumar, V., Shukla, S., Chandrakuntal, K., Brahmaraju, M., Dandin, S. B., Laloraya, M., & Kumar, P. G. (2007). Identification of a soluble NADPH oxidoreductase (BmNOX) with antiviral activities in the gut juice of Bombyx mori. Bioscience Biotechnology and Biochemistry, 71(1), 200-205. https://doi.org/10.1271/bbb.60450

Sethuraman, N. B., Nagaraju, J., & Datta, R. K. (1993). Purification and partial characterization of antiviral protein in silkworm, Bombyx mori. Indian Journal of Sericulture, 32(1), 63-68.

Singh, K. K. (1997). Some haematological and other studies in the silkworm Bombyx mori (Linnaeus) during the course of a viral disease. Doctoral Dissertation, Kamatak University.

Steinhaus, E. A. (1949). Principles of insect pathology. New York, US: McGraw-Hill Book Company Inc.

Steinhaus, E. A. (1963). Insect pathology on advanced treatise. New York, US: Academic Press

Sunagar, S. G., Savanurmath, C. J., & Hinchigeri, S. B. (2011). The profiles of red fluorescent proteins with antinucleopolyhedrovirus activity in races of the silkworm Bombyx mori. Journal of Insect Physiology, 57, 1707-1714. https://doi.org/10.1016/j.jinsphys.2011.09.009

Suresh, G. S., Srikar, L. N., Anitha, P., Shanthala, L., & Shankar, M. A. (2007). Purification and Partial Characterization of Red Fluorescent Protein from Silkworm, Bombyx mori. Indian Journal of Agricultural Biochemistry, 20(2), 63-68.

Suzuki, K. (1936). Research on the silkworm polyhedrosis I–IV. Bull. Kyoto Sericultural College, 1, 225-338.

Watanabe, H. (1986). Resistance of the silkworm, Bombyx mori, to viral infections. Agriculture, Ecosystems and Environment, 15, 131-139. https://doi.org/10.1016/0167-8809(86)90086-1

Yao, H. P., Xiang, X. W., Chen, L., Guo, A. Q., He, F. Q., Lan, L. P., Lu, X. M., & Wu, X. F. (2009). Identification of the proteome of the midgut of silkworm, Bombyx mori L.1by multidimensional liquid chromatography LTQ-Orbitrap mass spectrometry. Bioscience Reports, 29, 363-373. https://doi.org/10.1042/BSR20080144

Published

20-12-2024

How to Cite

Islam, T., & Qadir, J. (2024). Antiviral activity of red fluorescent proteins in silkworm, Bombyx mori L. Journal of Scientific Agriculture, 8, 100–103. https://doi.org/10.25081/jsa.2024.v8.9088

Issue

Section

Articles