Potential of silk proteins in cosmetics
DOI:
https://doi.org/10.25081/jsa.2024.v8.9070Keywords:
Cosmetic, Fibroin, Sericin, SILKALL, UV-protectionAbstract
Synthetic and inorganic chemical ingredients in cosmetic products pose serious health impacts on skin and hair. Much emphasis has been laid on the development of cost-effective, eco-friendly and user-friendly cosmetic products from time to time. Manufacturing cosmetics using natural ingredients is considered as a viable alternative to overcome the side effects of synthetics. Silk is a natural biopolymer obtained from cocoons of sericigenous insects like silkworms. It constitutes two proteins, viz., fibroin and sericin. Fibroin is the central core protein glued with sericin protein forming silken cocoons together. Both the proteins possess remarkable attributes viz, anti-microbial, anti-oxidant, anti-tyrosinase activity, efficient UV resistance, kinase activity, excellent release and absorption of moisture. The silk protein attributes are advantageous for body skin, hair and nails. It possesses a wide range of cosmetic applications such as facilitation of hair growth, improvement in softening and lustre of hair, rejuvenation of body and skin cells, UVB protection, prevention of chapping and brittleness of nails, and skin brightening. Due to its low molecular weight, easily penetrates the hair strands and skin cells, binds the keratin in hair and forms a protective layer to prevent moisture loss. A wide range of products have been developed for use in cosmetics viz., SILKPRO, SILKALL, SILKPRO 1000. These products are used as natural ingredients due to their potent applications in cosmetics. The cosmetic industry can be developed by proper utilization of silk in its organic products while promoting value addition to sericulture industry.
Downloads
References
Aburjai, T., & Natsheh, F. M. (2003). Plants used in cosmetics. Phytotherapy Research, 17(9), 987-1000. https://doi.org/10.1002/ptr.1363
Ahmad, U., & Akhtar, J. (2023). Cosmetic Products and Industry - New Advances and Applications. London, UK: IntechOpen Limited. https://doi.org/10.5772/intechopen.105296
Almukainzi, M., Alotaibi, L., Abdulwahab, A., Albukhary, N., & El Mahdy, A. M. (2022). Quality and safety investigation of commonly used topical cosmetic preparations. Scientific Reports, 12, 18299. https://doi.org/10.1038/s41598-022-21771-7
Alves, T. F. R., Morsink, M., Batain, F., Chaud, M. V., Almeida, T., Fernandes, D. A., da Silva, C. F., Souto, E. B., & Severino, P. (2020). Applications of natural, semi-synthetic, and synthetic polymers in cosmetic formulations. Cosmetics, 7(4), 75. https://doi.org/10.3390/cosmetics7040075
Amberg, N., & Fogarassy, C. (2019). Green consumer behavior in the cosmetics market. Resources, 8(3), 137. https://doi.org/10.3390/resources8030137
Anonymous. (2016a). Silk Peptides: Silky Skin from Weird Worms. Retrieved from https://beverlyhillsmd.com/silk-peptides-silky-skin-from-weird-worms/
Anonymous. (2016b). What are the benefits of Silk Protein for Hair Strengthening? Retrieved from https://allurials.com/blogs/allurials-beauty/what-are-the-benefits-of-silk-protein-for-hair-strengthening?srsltid=AfmBOoob5SkXNER3ixLnzslNr3F3GKU4BLYXB5thzAxcwPGVrLVlt839
Anonymous. (2016c). Silk Series-ikeda. Applications of silk proteins in cosmetics. Unpublished data submitted by the Ikeda Corporation, Japan.
Antignac, E., Nohynek, G. J., Re, T., Clouzeau, J., & Toutain, H. (2011). Safety of botanical ingredients in personal care products/cosmetics. Food and Chemical Toxicology, 49(2), 324-341. https://doi.org/10.1016/j.fct.2010.11.022
Aramwit, P., & Bang, N. (2014). The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnology, 14, 104. https://doi.org/10.1186/s12896-014-0104-x
Aramwit, P., Kanokpanont, S., De-Eknamkul, W., Kamei, K., & Srichana, T. (2009). The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. Journal of Biomaterials Science, Polymer Edition, 20(9), 1295-1306. https://doi.org/10.1163/156856209X453006
Aramwit, P., Luplertlop, N., Kanjanapruthipong, T., & Ampawong, S. (2018). Effect of ureaextracted sericin on melanogenesis: potential applications in post-inflammatory hyperpigmentation. Biological Research, 51, 54. https://doi.org/10.1186/s40659-018-0204-5
Aramwit, P., Siritientong, T., & Srichana, T. (2012). Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Management & Research, 30(3), 217-224. https://doi.org/10.1177/0734242X11404733
Aziz, Z. A. A., & Setapar, S. H. M. (2022). Current status and future prospect of nanotechnology incorporated plant-based extracts in cosmeceuticals. In S. H. M. Setapar, A. Ahmad & M. Jawaid (Eds.), Nanotechnology for the preparation of cosmetics using plant-based extracts (pp. 235-261). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-822967-5.00009-6
Babu, K. M. (2017). Silk from silkworms and spiders as high-performance fibers. In G. Bhat (Eds.), Structure and properties of high-performance fibers (pp. 327-366) Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100550-7.00013-9
Babu, K. M., Sahana, N., Anitha, D. V., & Kavya, B. S. (2021). Silk fibroin coated antimicrobial textile medical products. The Journal of the Textile Institute, 112(8), 1199-1207. https://doi.org/10.1080/00405000.2020.1806634
Babu, P. J., & Suamte, L. (2024). Applications of Silk-based Biomaterials in Biomedicine and Biotechnology. Engineered Regeneration, 5(1), 56-69. https://doi.org/10.1016/j.engreg.2023.11.002
Baki, G. (2022). Introduction to cosmetic formulation and technology. (2nd ed.). New York, US: John Wiley & Sons.
Barajas-Gamboa, J. A., Serpa-Guerra, A. M., Restrepo-Osorio, A., & Ãlvarez-López, C. (2016). Sericin Applications: A Globular Silk Protein. Ingeniería y Competitividad, 18(2), 193-206.
Barbulova, A., Colucci, G., & Apone, F. (2015). New trends in cosmetics: By-products of plant origin and their potential use as cosmetic active ingredients. Cosmetics, 2(2), 82-92. https://doi.org/10.3390/cosmetics2020082
Bedoux, G., Hardouin, K., Burlot, A. S., & Bourgougnon, N. (2014). Bioactive components from seaweeds: Cosmetic applications and future development. Advances in Botanical Research, 71, 345-378. https://doi.org/10.1016/B978-0-12-408062-1.00012-3
Beitone, R., Sturla, J. M., Paty, H., Meurice, P., & Samain, H. (1986). Temporary restyling of the hair. In C. Bouillon & J. Wilkinson (Eds.), The Science of Hair Care (pp. 197-230) Florida, US: CRC Press. https://doi.org/10.1201/b14191
Bernardes, B. G., Veiga, A., Barros, J., García-González, C. A., & Oliveira, A. L. (2024). Sustainable Silk-Based Particulate Systems for the Controlled Release of Pharmaceuticals and Bioactive Agents in Wound Healing and Skin Regeneration. International Journal of Molecular Sciences, 25(6), 3133. https://doi.org/10.3390/ijms25063133
Bilal, M., Mehmood, S., & Iqbal, H. M. N. (2020). The beast of beauty: environmental and health concerns of toxic components in cosmetics. Cosmetics, 7(1), 13. https://doi.org/10.3390/cosmetics7010013
Bom, S., Jorge, J., Ribeiro, H. M., & Marto, J. (2019). A step forward on sustainability in the cosmetics industry: A review. Journal of Cleaner Production, 225, 270-290. https://doi.org/10.1016/j.jclepro.2019.03.255
Boyer, I. J., Bergfeld, W. F., Heldreth, B., Fiume, M. M., & Gill, L. J. (2017). The cosmetic ingredient review program—expert safety assessments of cosmetic ingredients in an open forum. International Journal of Toxicology, 36(5_S2), S5-S13. https://doi.org/10.1177/1091581817717646
Camargo Jr, F. B., Minami, M. M., Rossan, M. R., Magalhaes, W. V., Ferreira, V. T. P., & Campos, P. M. B. G. M. (2022). Prevention of chemically induced hair damage by means of treatment based on proteins and polysaccharides. Journal of Cosmetic Dermatology, 21(2), 827-835. https://doi.org/10.1111/jocd.14148
Cao, T.-T. & Zhang, Y.-Q. (2016). Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Materials Science and Engineering: C, 61, 940-952. https://doi.org/10.1016/j.msec.2015.12.082
Chen, J., Xu, Y., & Ning, X. (2022). Integrated construction of silkworm cocoon-inspired 3D scaffold for improving cell manufacture and cryopreservation. International Journal of Biological Macromolecules, 221, 723-735. https://doi.org/10.1016/j.ijbiomac.2022.09.063
Chirila, T. V. (2021). Oxygen permeability of silk fibroin hydrogels and their use as materials for contact lenses: A purposeful analysis. Gels, 7(2), 58. https://doi.org/10.3390/gels7020058
Chon, J.-W., Kweon, H.-Y., Jo, Y.-Y., Park, M.-K., Son, Y.-H., & Lee, H.-S. (2012). A study on the development of functional cosmetics using silk-gland powder of silkworm. Journal of the Society of Cosmetic Scientists of Korea, 38(2), 163-169. https://doi.org/10.15230/SCSK.2012.38.2.163
Choudhury, A. J., Gogoi, D., Chutia, J., Kandimalla, R., Kalita, S., Kotoky, J., Chaudhari, Y. B., Khan, M. R., & Kalita, K. (2016). Controlled antibiotic-releasing Antheraea assama silk fibroin suture for infection prevention and fast wound healing. Surgery, 159(2), 539-547. https://doi.org/10.1016/j.surg.2015.07.022
Chouhan, D., & Mandal, B. B. (2020). Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomaterialia, 103, 24-51. https://doi.org/10.1016/j.actbio.2019.11.050
Costa, F., Silva, R., & Boccaccini, A. R. (2018). Fibrous protein-based biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair. In M. A. Barbosa & M. C. L. Martins (Eds.), Peptides and proteins as Biomaterials for Tissue Regeneration and Repair (pp. 175-204) Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100803-4.00007-3
Cristiano, L., & Guagni, M. (2022). Zooceuticals and cosmetic ingredients derived from animals. Cosmetics, 9(1), 13. https://doi.org/10.3390/cosmetics9010013
Cui, Y., Zhu, Y., Lin, Y., Chen, L., Feng, Q., Wang, W., & Xiang, H. (2018). New insight into the mechanism underlying the silk gland biological process by knocking out fibroin heavy chain in the silkworm. BMC Genomics, 19, 215. https://doi.org/10.1186/s12864-018-4602-4
Dai, L., & Hansenne-Cervantes, I. (2024). Protein-Based Materials in Cosmetics. In F. R. A. Maia, J. M. Oliveira & R. L. Reis (Eds.), Handbook of the Extracellular Matrix: Biologically-Derived Materials (pp. 357-379). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-92090-6_18-1
Daithankar, A. V., Padamwar, M. N., Pisal, S. S., Paradkar, A. R., & Mahadik, K. R. (2005). Moisturizing efficiency of silk protein hydrolysate: Silk fibroin. Indian Journal of Biotechnology, 4,115-121.
Desam, N. R., & Al-Rajab, A. J. (2021). The importance of natural products in cosmetics. In D. Pal & A. K. Nayak (Eds.), Bioactive natural products for pharmaceutical applications (pp. 643-685) Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-54027-2_19
Dodson, R. E., Cardona, B., Zota, A. R., Flint, J. R., Navarro, S., & Shamasunder, B. (2021). Personal care product use among diverse women in California: Taking Stock Study. Journal of Exposure Science & Environmental Epidemiology, 31, 487-502. https://doi.org/10.1038/s41370-021-00327-3
Dubey, S. K., Dey, A., Singhvi, G., Pandey, M. M., Singh, V., & Kesharwani, P. (2022). Emerging trends of nanotechnology in advanced cosmetics. Colloids and Surfaces B: Biointerfaces, 214, 112440. https://doi.org/10.1016/j.colsurfb.2022.112440
El-Sayed, H., Taleb, M. A., & Mowafi, S. (2021). Potential applications of textile wastes and by-products in preparation of textile auxiliaries. Egyptian Journal of Chemistry, 64(8), 4433-4447. https://doi.org/10.21608/ejchem.2021.79398.3899
Fernandes, M. M., Lima, C. F., Loureiro, A., Gomes, A. C., & Cavaco‐Paulo, A. (2012). Keratin‐based peptide: biological evaluation and strengthening properties on relaxed hair. International Journal of Cosmetic Science, 34(4), 338-346. https://doi.org/10.1111/j.1468-2494.2012.00727.x
Freitas, A., Moldão‐Martins, M., Costa, H. S., Albuquerque, T. G., Valente, A., & Sanches-Silva, A. (2015). Effect of UV‐C radiation on bioactive compounds of pineapple (Ananas comosus L. Merr.) by‐products. Journal of the Science of Food and Agriculture, 95(1), 44-52. https://doi.org/10.1002/jsfa.6751
Garrigue, J.-L., Ballantyne, M., Kumaravel, T., Lloyd, M., Nohynek, G. J., Kirkland, D., & Toutain, H. (2006). In vitro genotoxicity of para-phenylenediamine and its Nmonoacetyl or N, N′-diacetyl metabolites. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 608(1), 58-71. https://doi.org/10.1016/j.mrgentox.2006.05.001
Ghonmode, S. V. (2016). Applications of Protein Sericin from the Silkgland of Silkworm: A Review. International Journal of Researches in Bioscience, Agriculture and Technology, 4(3), 34-37. https://doi.org/10.29369/ijrbat.2016.04.III.0010
Ghosh, S., Rao, R. S., Nambiar, K. S., Haragannavar, V. C., Augustine, D., & Sowmya, S. V. (2019). Sericin, a dietary additive: Mini review. Journal of Medicine, Radiology, Pathology & Surgery, 6(1), 4-8.
Halla, N., Fernandes, I. P., Heleno, S. A., Costa, P., Boucherit-Otmani, Z., Boucherit, K., Rodrigues, A. E., Ferreira, I. C. F. R., & Barreiro, M. F. (2018). Cosmetics preservation: a review on present strategies. Molecules, 23(7), 1571. https://doi.org/10.3390/molecules23071571
Hanawa, T., Watanabe, A., Tsuchiya, T., Ikoma, R., Hidaka, M., & Sugihara, M. (1995). New oral dosage form for elderly patients: preparation and characterization of silk fibroin gel. Chemical and Pharmaceutical Bulletin, 43(2), 284-288. https://doi.org/10.1248/cpb.43.284
Howard, G. M. (1974). Hair Preparations. In G. M. Howard (Eds.), Perfumes, Cosmetics and Soaps: Modern Cosmetics (pp. 89-163). New York, US: Springer. https://doi.org/10.1007/978-1-4899-3055-2
Hyun, J.-W., Lee, K.-G., Yeo, J., & Choe, T. (2008). Hair Care Effects of Hair Cosmetics including Low Molecular Weight Silk Peptide Component and Micro Structure Analysis. KSBB Journal, 23(5), 439-444.
Jeencham, R., Sutheerawattananonda, M., & Tiyaboonchai, W. (2019). Preparation and characterization of chitosan/regenerated silk fibroin (CS/RSF) films as a biomaterial for contact lenses-based ophthalmic drug delivery system. International Journal of Applied Pharmaceutics, 11(4), 275-284. https://doi.org/10.22159/ijap.2019v11i4.33283
Johnson Jr, W., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks Jr, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., Gill, L. J., & Heldreth, B. (2020). Safety assessment of silk protein ingredients as used in cosmetics. International Journal of Toxicology, 39(S3), S127-S144. https://doi.org/10.1177/1091581820966953
Juliano, C., & Magrini, G. A. (2018). Cosmetic Functional Ingredients from Botanical Sources for Anti-pollution Skincare Products. Cosmetics, 5(1), 19. https://doi.org/10.3390/cosmetics5010019
Kapoor, S., & Kundu, S. C. (2016). Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomaterialia, 31, 17-32. https://doi.org/10.1016/j.actbio.2015.11.034
Khosa, M. A., & Ullah, A. (2013). A sustainable role of keratin biopolymer in green chemistry: a review. Journal of Food Processing & Beverages, 1(1), 4.
Khraim, H. S. (2011). The influence of brand loyalty on cosmetics buying behavior of UAE female consumers. International Journal of Marketing Studies, 3(2), 123-133. https://doi.org/10.5539/ijms.v3n2p123
Kim, S., & Seock, Y.-K. (2009). Impacts of health and environmental consciousness on young female consumers' attitude towards and purchase of natural beauty products. International Journal of Consumer Studies, 33(6), 627-638. https://doi.org/10.1111/j.1470-6431.2009.00817.x
Kirikawa, M., Kasaharu, T., Kishida, K., & Akiyama, D. (2000). Silk Protein Micropowders for Coating with Excellent Feeling, Antistaticity and Moisture Absorbability and Releasability and there Manufacture. Chemical Abstracts, 132(1), 8.
Koczoń, P., Dąbrowska, A., Laskowska, E., Łabuz, M., Maj, K., Masztakowski, J., Bartyzel, B. J., Bryś, A., Bryś, J., & Gruczyńska-Sękowska, E. (2023). Applications of silk fibroin in human and veterinary medicine. Materials, 16(22), 7128. https://doi.org/10.3390/ma16227128
Koh, L.-D., Cheng, Y., Teng, C.-P., Khin, Y.-W., Loh, X.-J., Tee, S.-Y., Low, M., Ye, E., Yu, H.-D., Zhang, Y.-W., & Han, M.-Y. (2015). Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 46, 86-110. https://doi.org/10.1016/j.progpolymsci.2015.02.001
Koh, L.-D., Yeo, J., Lee, Y. Y., Ong, Q., Han, M., & Tee, B.C.-K. (2018). Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical woundhealing (Invited review). Materials Science and Engineering: C, 86, 151-172. https://doi.org/10.1016/j.msec.2018.01.007
Kundu, B., Rajkhowa, R., Kundu, S. C., & Wang, X. (2013). Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 65(4), 457-470. https://doi.org/10.1016/j.addr.2012.09.043
Kundu, S. C., Dash, B. C., Dash, R., & Kaplan, D. L. (2008). Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Progress in Polymer Science, 33(10), 998-1012. https://doi.org/10.1016/j.progpolymsci.2008.08.002
Kunz, R. I., Brancalhão, R. M. C., Ribeiro, L. de F. C., & Natali, M. R. M. (2016). Silkworm sericin: properties and biomedical applications. BioMed Research International, 2016, 8175701. https://doi.org/10.1155/2016/8175701
Li, A. B., Kluge, J. A., Guziewicz, N. A., Omenetto, F. G., & Kaplan, D. L. (2015). Silk-based stabilization of biomacromolecules. Journal of Controlled Release, 219, 416-430. https://doi.org/10.1016/j.jconrel.2015.09.037
Lochhead, R. Y. (2007). The Role of Polymers in Cosmetics: recent trends. ACS Symposium Series. Washington, US: American Chemical Society.
Louiselle, A. E., Niemiec, S., Azeltine, M., Mundra, L., French, B., Zgheib, C., & Liechty, K. W. (2022). Evaluation of Skin Care Concerns and Patient’s Perception of the Effect of NanoSilk Cream on Facial Skin. Journal of Cosmetic Dermatology, 21(3), 1075-1085. https://doi.org/10.1111/jocd.14198
Lujerdean, C., Baci, G.-M., Cucu, A.-A., & Dezmirean, D.S. (2022). The contribution of silk fibroin in biomedical engineering. Insects, 13(3), 286. https://doi.org/10.3390/insects13030286
Mahesh, S. K., Fathima, J., & Veena, V. G. (2019). Cosmetic potential of natural products: industrial applications. In M. K. Swamy & M. S. Akhtar (Eds.), Natural bio-active compounds (Vol. 2, pp. 215-250) Singapore: Springer. https://doi.org/10.1007/978-981-13-7205-6_10
Mathew-Steiner, S. S., Roy, S. & Sen, C. K. (2021). Collagen in wound healing. Bioengineering, 8(5), 63. https://doi.org/10.3390/bioengineering8050063
Mayen, J. F. C., Lupan, A., Cosar, C., Kun, A.-Z., & Silaghi-Dumitrescu, R. (2015). On the roles of the alanine and serine in the β-sheet structure of fibroin. Biophysical Chemistry, 197, 10-17. https://doi.org/10.1016/j.bpc.2014.11.001
Mazurek, Ł., Szudzik, M., Rybka, M., & Konop, M. (2022). Silk fibroin biomaterials and their beneficial role in skin wound healing. Biomolecules, 12(12), 1852. https://doi.org/10.3390/biom12121852
Michalak, M. (2023). Plant extracts as skin care and therapeutic agents. International Journal of Molecular Sciences, 24(20), 15444. https://doi.org/10.3390/ijms242015444
Miyashita, T. (1999). Sweat and Sebum Absorbing Cosmetics Containing Cellulose Fibres. Chemical Abstracts, 131(2), 3.
Mohiuddin, A. K. (2019). Skin aging & modern age anti-aging strategies. International Journal of Clinical Dermatology and Research, 7(4), 209-240. https://doi.org/10.19070/2332-2977-1900052
Nayak, S., & Kundu, S.C. (2016). Silk protein sericin: promising biopolymer for biological and biomedical applications. In N. M. Neves & R. L. Reis (Eds.), Biomaterials from Nature for Advanced Devices and Therapies (pp. 142-158) New Jersey, US: John Wiley & Sons. https://doi.org/10.1002/9781119126218.ch9
Nguyen, T. P., Nguyen, Q. V., Nguyen, V.-H., Le, T.-H., Huynh, V. Q. N., Vo, D.-V. N., Trinh, Q. T., Kim, S. Y., & Le, Q. V. (2019). Silk fibroin-based biomaterials for biomedical applications: a review. Polymers, 11(12), 1933. https://doi.org/10.3390/polym11121933
Nohynek, G. J., Antignac, E., Re, T., & Toutain, H. (2010). Safety assessment of personal care products/cosmetics and their ingredients. Toxicology and Applied Pharmacology, 243(2), 239-259. https://doi.org/10.1016/j.taap.2009.12.001
Orlandi, G., Faragò, S., Menato, S., Sorlini, M., Butti, F., Mocchi, M., Donelli, I., Catenacci, L., Sorrenti, M. L., Croce, S., Segale, L., Torre, M. L., & Perteghella, S. (2020). Eco‐sustainable silk sericin from by‐product of textile industry can be employed for cosmetic, dermatology and drug delivery. Journal of Chemical Technology & Biotechnology, 95(9), 2549-2560. https://doi.org/10.1002/jctb.6441
Padamwar, M. N., & Pawar, A. (2004). Silk Sericin and its Applications: A review. Journal of Scientific & Industrial Research, 63, 323-329.
Panico, A., Serio, F., Bagordo, F., Grassi, T., Idolo, A., De Giorgi, M., Guido, M., Congedo, M., & De Donno, A. (2019). Skin safety and health prevention: an overview of chemicals in cosmetic products. Journal of Preventive Medicine and Hygiene, 60(1), E50-E57. https://doi.org/10.15167/2421-4248/jpmh2019.60.1.1080
Patil, A., & Ferritto, M. S. (2013). Polymers for Personal Care and Cosmetics. Washington, US: American Chemical Society. https://doi.org/10.1021/bk-2013-1148
Pham, D. T., Nguyen, D. X. T., Lieu, R., Huynh, Q. C., Nguyen, N. Y., Quyen, T. T. B., & Tran, V. D. (2023). Silk Nanoparticles for the Protection and Delivery of Guava Leaf (Psidium guajava L.) extract for Cosmetic Industry, a new approach for an old herb. Drug Delivery, 30(1), 2168793. https://doi.org/10.1080/10717544.2023.2168793
Rajshree, B. A., & Sahastrabuddhe, S. (2018). Silk Protein: A Boon to Cosmetics. Journal of Emerging Technology and Innovative Research, 5(10), 436-443.
Reddy, R. M. (2009). Innovative and multidirectional applications of natural fibre, silk-a review. Academic Journal of Entomology, 2(2), 71-75.
Rothe, H., Fautz, R., Gerber, E., Neumann, L., Rettinger, K., Schuh, W., & Gronewold, C. (2011). Special aspects of cosmetic spray safety evaluations: principles on inhalation risk assessment. Toxicology letters, 205(2), 97-104. https://doi.org/10.1016/j.toxlet.2011.05.1038
Senti, G., Steinmann, L. S., Fischer, B., Kurmann, R., Storni, T., Johansen, P., Schmid-Grendelmeier, P., Wüthrich, B., & Kündig, T. M. (2006). Antimicrobial silk clothing in the treatment of atopic dermatitis proves comparable to topical corticosteroid treatment. Dermatology, 213(3), 228-233. https://doi.org/10.1159/000095041
Shavandi, A., Silva, T. H., Bekhit, A. A., & Bekhit, A. E.-D. A. (2017). Keratin: dissolution, extraction and biomedical application. Biomaterials Science, 5, 1699-1735. https://doi.org/10.1039/C7BM00411G
Sheng, J. Y., Xu, J., Zhuang, Y., Sun, D. Q., Xing, T. L., & Chen, G. Q. (2013). Study on the application of sericin in cosmetics. Advanced Materials Research, 796, 416-423. https://doi.org/10.4028/www.scientific.net/amr.796.416
Shinde, D. B., Pawar, R., Vitore, J., Kulkarni, D., Musale, S., & Giram, P. S. (2021). Natural and synthetic functional materials for broad spectrum applications in antimicrobials, antivirals and cosmetics. Polymers for Advanced Technologies, 32(11), 4204-4222. https://doi.org/10.1002/pat.5457
Silva, A. S., Costa, E. C., Reis, S., Spencer, C., Calhelha, R. C., Miguel, S. P., Ribeiro, M. P., Barros, L., Vaz, J. A., & Coutinho, P. (2022). Silk sericin: A promising sustainable biomaterial for biomedical and pharmaceutical applications. Polymers, 14(22), 4931. https://doi.org/10.3390/polym14224931
Singh, M. K., Singh, A., & Morris, H. V. (2023b). Cosmeto-textiles. Textile Progress, 55(3), 109-163. https://doi.org/10.1080/00405167.2023.2258675
Singh, M., Changmai, M., Ghosh, T., & Karwa, A. (2023a). Natural Resource‐Based Nanobiomaterials: A Sustainable Material for Biomedical Applications. In A. Prasad, A. Kumar & M. Gupta (Eds.), Advanced Materials and Manufacturing Techniques for Biomedical Applications (pp. 61-101) New Jersey, US: John Wiley & Sons. https://doi.org/10.1002/9781394166985.ch4
Sinha, A., Parida, P., Ananta, S., Jena, K., & Sathyanarayana, K. (2022). Sericin- A Gift of Nature: Its Applications. Plant Archives, 22, 188-195.
Sionkowska, A., & Planecka, A. (2011). The influence of UV radiation on silk fibroin. Polymer Degradation and Stability, 96(4), 523-528. https://doi.org/10.1016/j.polymdegradstab.2011.01.001
Somwanshi, S. B., Kumar, S., & Rathore, G. S. (2023). Cosmetic Science. Bhopal, MP: Academic Guru Publishing House.
Song, D. W., Kim, S. H., Kim, H. H., Lee, K. H., Ki, C. S., & Park, Y. H. (2016). Multibiofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing. Acta Biomaterialia, 39, 146-155. https://doi.org/10.1016/j.actbio.2016.05.008
Su, D., Ding, S., Shi, W., Huang, X., & Jiang, L. (2019). Bombyx mori silk-based materials with implication in skin repair: Sericin versus regenerated silk fibroin. Journal of Biomaterials Applications, 34(1), 36-46. https://doi.org/10.1177/0885328219844978
Surya, M., & Gunasekaran, S. (2021). A review on recent scenario of cosmetics. International Journal of Pharmaceutical Science Review & Research, 68(1), 190-197. https://doi.org/10.47583/ijpsrr.2021.v68i01.030
Suryawanshi, R., Kanoujia, J., Parashar, P., & Saraf, S. A. (2020). Sericin: A versatile protein biopolymer with therapeutic significance. Current Pharmaceutical Design, 26(42), 5414-5429. https://doi.org/10.2174/1381612826666200612165253
Takasu, Y., Yamada, H., & Tsubouchi, K. (2002). Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Bioscience, Biotechnology, and Biochemistry, 66(12), 2715-2718. https://doi.org/10.1271/bbb.66.2715
Tinoco, A., Gonçalves, J., Silva, C., Cavaco-Paulo, A., & Ribeiro, A. (2019). Crystallin fusion proteins improve the thermal properties of hair. Frontiers in Bioengineering and Biotechnology, 7, 298. https://doi.org/10.3389/fbioe.2019.00298
Tinoco, A., Gonçalves, J., Silva, C., Loureiro, A., Gomes, A. C., Cavaco‐Paulo, A., & Ribeiro, A. (2018). Keratin‐based particles for protection and restoration of hair properties. International Journal of Cosmetic Science, 40(4), 408-419. https://doi.org/10.1111/ics.12483
Tinoco, A., Martins, M., Cavaco-Paulo, A., & Ribeiro, A. (2022). Biotechnology of functional proteins and peptides for hair cosmetic formulations. Trends in Biotechnology, 40(5), 591-605. https://doi.org/10.1016/j.tibtech.2021.09.010
Velasco, M. V. R., Dias, T. C. de S., Freitas, A. Z. de, Júnior, N. D. V., Pinto, C. A. S. de O., Kaneko, T. M., & Baby, A. R. (2009). Hair fiber characteristics and methods to evaluate hair physical and mechanical properties. Brazilian Journal of Pharmaceutical Sciences, 45, 153-162. https://doi.org/10.1590/S1984-82502009000100019
Vidya, M., & Rajagopal, S. (2021). Silk fibroin: a promising tool for wound healing and skin regeneration. International Journal of Polymer Science, 1, 9069924. https://doi.org/10.1155/2021/9069924
Wang, R., & Tong, H. (2022). Preparation methods and functional characteristics of regenerated keratin-based biofilms. Polymers, 14(21), 4723. https://doi.org/10.3390/polym14214723
Wöltje, M., & Böbel, M. (2017). Natural biodegradable medical polymers: silk. In X. C. Zhang (Eds.), Science and principles of biodegradable and bioresorbable medical polymers (pp. 351-376) Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100372-5.00012-X
Wong, J., Chan, H.-K., & Chrzanowski, W. (2014). Silk for pharmaceutical and cosmeceutical applications. In S.C. Kundu (Eds.), Silk Biomaterials for Tissue Engineering and Regenerative Medicine (pp. 519-545) Sawston, UK: Woodhead Publishing. https://doi.org/10.1533/9780857097064.3.519
Wongkrongsak, S., Piroonpan, T., Coqueret, X., & Pasanphan, W. (2022). Radiation-processed silk fibroin micro-/nano-gels as promising antioxidants: Electron beam treatment and physicochemical characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 653, 129892. https://doi.org/10.1016/j.colsurfa.2022.129892
Wongpinyochit, T., Johnston, B. F., & Seib, F. P. (2016). Manufacture and drug delivery applications of silk nanoparticles. Journal of Visualized Experiments, 116, e54669. https://doi.org/10.3791/54669
Wu, J., Sahoo, J. K., Li, Y., Xu, Q., & Kaplan, D. L. (2022). Challenges in delivering therapeutic peptides and proteins: A silk-based solution. Journal of Controlled Release, 345, 176-189. https://doi.org/10.1016/j.jconrel.2022.02.011
Yanqing, Y. (2004). A Study of the Relationship between the Molecular Weight of the Sericin Peptides and the Effects of Hair-care. Journal of Textile Research, 25(2), 1415.
Yasuda, N., Yamada, H., & Nomura, M. (1998). Sericin from silk as dermatitis inhibitor Jpn Kokai Tokkyo Koho Jap 10245345 A2 (to Se iran Co Ltd, Japan) 14 September 1998, Heisei, P 4. Chemistry Abstract, 129(16), 207197.
Yoshioka, M., Segawa, A., Veda, A., & Omi, S. (2001). UV absorbing compositions containing fine capsules. Chemical Abstracts, 134(14), 14.
Zhaorigetu, S., Yanaka, N., Sasaki, M., Watanabe, H., & Kato, N. (2003). Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. Journal of Photochemistry and Photobiology B: Biology, 71(1-3), 11-17. https://doi.org/10.1016/S1011-1344(03)00092-7
Published
How to Cite
Issue
Section
Copyright (c) 2024 Jasmeena Qadir, Tajamul Islam

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.